Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1989, Volume 32, Issue 3, Pages 663–668
DOI: https://doi.org/10.1070/IM1989v032n03ABEH000805
(Mi im1199)
 

This article is cited in 21 scientific papers (total in 21 papers)

On deformation of sheaves

I. V. Artamkin
References:
Abstract: Let $X$ be an algebraic variety over an algebraically closed field $k$, $\mathscr F$ a sheaf on $X$, $A$ and $\widetilde A$ commutative Artinian $k$-algebras, $A=\widetilde A/I$, where $I$ is a one-dimensional ideal, $\mathscr E$ a deformation of $\mathscr F$ with base $\operatorname{Spec}A$, and $\operatorname{Ob}(\mathscr E,A,\widetilde A)\in\operatorname{Ext}^2(\mathscr F,\mathscr F)$ the obstruction to the extension of the deformation to $\operatorname{Spec}\widetilde A$. The author constructs natural trace maps $\operatorname{tr}^i\colon\operatorname{Ext}^i(\mathscr F,\mathscr F)\to H^i(\mathscr O_X)$ and proves that if $\operatorname{Pic}X$ is nonsingular then $\operatorname{tr}^2(\operatorname{Ob}(\mathscr E,A,\widetilde A))=0$. As a consequence, a universal deformation of a simple sheaf $\mathscr F$ on $X$ with nonsingular $\operatorname{Pic}X$ exists if the map $\operatorname{tr}^2$ is injective or, in the case $\operatorname{rk}\mathscr F\ne0$, and $\operatorname{char}k\nmid\operatorname{rk}\mathscr F$, $\operatorname{Ext}^2(\mathscr F,\mathscr F)=H^2(\mathscr O_X)$.
Bibliography: 3 titles.
Received: 23.10.1986
Bibliographic databases:
UDC: 512.7
MSC: 14D15, 14F05
Language: English
Original paper language: Russian
Citation: I. V. Artamkin, “On deformation of sheaves”, Math. USSR-Izv., 32:3 (1989), 663–668
Citation in format AMSBIB
\Bibitem{Art88}
\by I.~V.~Artamkin
\paper On deformation of sheaves
\jour Math. USSR-Izv.
\yr 1989
\vol 32
\issue 3
\pages 663--668
\mathnet{http://mi.mathnet.ru//eng/im1199}
\crossref{https://doi.org/10.1070/IM1989v032n03ABEH000805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=954302}
\zmath{https://zbmath.org/?q=an:0709.14012}
Linking options:
  • https://www.mathnet.ru/eng/im1199
  • https://doi.org/10.1070/IM1989v032n03ABEH000805
  • https://www.mathnet.ru/eng/im/v52/i3/p660
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024