Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 2, Pages 235–258
DOI: https://doi.org/10.1070/im1997v061n02ABEH000113
(Mi im113)
 

This article is cited in 19 scientific papers (total in 19 papers)

A method of smooth approximation in the theory of necessary optimality conditions for differential inclusions

S. M. Aseev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: In this paper we develop a constructive method of approximation of a differential inclusion by a sequence of smooth control systems. Combining this with other methods of approximation [7], [17], we reduce the optimal control problem for a differential inclusion with state constraints to the classical optimal control problem without constraints on state or endpoints. New necessary optimality conditions for differential inclusions with state constraints are developed. These conditions involve both the refined Euler–Lagrange inclusion [8] and the stationarity condition for the Hamiltonian [15], [16].
Received: 22.03.1996
Bibliographic databases:
Document Type: Article
MSC: 49K15, 49K24
Language: English
Original paper language: Russian
Citation: S. M. Aseev, “A method of smooth approximation in the theory of necessary optimality conditions for differential inclusions”, Izv. Math., 61:2 (1997), 235–258
Citation in format AMSBIB
\Bibitem{Ase97}
\by S.~M.~Aseev
\paper A~method of smooth approximation in the theory of necessary optimality conditions for differential inclusions
\jour Izv. Math.
\yr 1997
\vol 61
\issue 2
\pages 235--258
\mathnet{http://mi.mathnet.ru//eng/im113}
\crossref{https://doi.org/10.1070/im1997v061n02ABEH000113}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1470141}
\zmath{https://zbmath.org/?q=an:0895.49015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XZ08200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-21744454217}
Linking options:
  • https://www.mathnet.ru/eng/im113
  • https://doi.org/10.1070/im1997v061n02ABEH000113
  • https://www.mathnet.ru/eng/im/v61/i2/p3
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025