Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1991, Volume 36, Issue 2, Pages 349–367
DOI: https://doi.org/10.1070/IM1991v036n02ABEH002025
(Mi im1097)
 

This article is cited in 18 scientific papers (total in 18 papers)

The norm residue homomorphism of degree three

A. S. Merkur'ev, A. A. Suslin
References:
Abstract: An analogue of Hilbert's Theorem 90 is proved for the Milnor groups of the fields $K_3^M$. Specifically, let $L/F$ be a quadratic extension, and let be the generator of the Galois group. Then the sequence
$$ K_3^M(L)\stackrel{1-\sigma}{\longrightarrow}K_3^M(L)\stackrel{N}{\longrightarrow}K_3^M(F) $$

is exact. As a corollary one can prove bijectivity of the norm residue homomorphism of degree three:
$$ K_3^M(F)/2^nK_3^M(F)\to H^3(F,\mu_{2^n}^{\otimes 3}). $$
Finally, the 2-primary torsion in $K_3^M(F)$ is described: if the field $F$ contains a primitive $2^n$th root of unity $\xi$, then the $2^n$-torsion subgroup of $K_3^M(F)$ is $\{\xi\}\cdot K_2(F)$.
Received: 15.06.1988
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1990, Volume 54, Issue 2, Pages 339–356
Bibliographic databases:
UDC: 512.772
MSC: Primary 12G05, 11R34; Secondary 18F25, 14F15
Language: English
Original paper language: Russian
Citation: A. S. Merkur'ev, A. A. Suslin, “The norm residue homomorphism of degree three”, Izv. Akad. Nauk SSSR Ser. Mat., 54:2 (1990), 339–356; Math. USSR-Izv., 36:2 (1991), 349–367
Citation in format AMSBIB
\Bibitem{MerSus90}
\by A.~S.~Merkur'ev, A.~A.~Suslin
\paper The norm residue homomorphism of degree~three
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1990
\vol 54
\issue 2
\pages 339--356
\mathnet{http://mi.mathnet.ru/im1097}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1062517}
\zmath{https://zbmath.org/?q=an:0716.19002|0711.19003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991IzMat..36..349M}
\transl
\jour Math. USSR-Izv.
\yr 1991
\vol 36
\issue 2
\pages 349--367
\crossref{https://doi.org/10.1070/IM1991v036n02ABEH002025}
Linking options:
  • https://www.mathnet.ru/eng/im1097
  • https://doi.org/10.1070/IM1991v036n02ABEH002025
  • https://www.mathnet.ru/eng/im/v54/i2/p339
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:477
    Russian version PDF:187
    English version PDF:13
    References:50
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024