|
This article is cited in 15 scientific papers (total in 15 papers)
On the asymptotic behaviour of the Titchmarsh–Weyl $m$-function
A. A. Danielyan, B. M. Levitan
Abstract:
The asymptotic expansion
$$
m(z)=\frac{i}{\sqrt z}+\sum_{k=1}^{n+1}a_k(-z)^{-(k+2)/2}+\varepsilon_n(z),\quad \varepsilon_n(z)=o(|z|^{-(k+3)/2}),
$$
valid outside any angle $|{\operatorname{tg}\theta}|<\varepsilon$, $\varepsilon>0$, is obtained for the Weyl–Titchmarsh function of the Sturm-Liouville problem on the half-axis with potential $g(x)\in C^n[0,\delta)$.
Received: 26.05.1988
Citation:
A. A. Danielyan, B. M. Levitan, “On the asymptotic behaviour of the Titchmarsh–Weyl $m$-function”, Math. USSR-Izv., 36:3 (1991), 487–496
Linking options:
https://www.mathnet.ru/eng/im1082https://doi.org/10.1070/IM1991v036n03ABEH002031 https://www.mathnet.ru/eng/im/v54/i3/p469
|
Statistics & downloads: |
Abstract page: | 472 | Russian version PDF: | 177 | English version PDF: | 12 | References: | 52 | First page: | 1 |
|