Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1991, Volume 36, Issue 3, Pages 449–485
DOI: https://doi.org/10.1070/IM1991v036n03ABEH002030
(Mi im1081)
 

This article is cited in 14 scientific papers (total in 14 papers)

Deforming torison-free sheaves on an algebraic surface

I. V. Artamkin
References:
Abstract: This paper investigates the question of removability of singularities of torsion-free sheaves on algebraic surfaces in the universal deformation and the existence in it of a nonempty open set of locally free sheaves, and describes the tangent cone to the set of sheaves having degree of singularities larger than a given one. These results are used to prove that quasitrivial sheaves $\mathscr F$ on an algebraic surface $X$ with $c_2(\mathscr F)>(r+1)\max(1,p_g(X))$ have a universal deformation whose general sheaf is locally free and stable relative to any ample divisor on $X$, and thereby to find a nonempty component of the moduli space of stable bundles on $X$ with $c_1=0$ and $c_2>\max(1,p_g(X))\cdot(r+1)$ on any algebraic surface.
Received: 22.11.1988
Revised: 23.01.1989
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1990, Volume 54, Issue 3, Pages 435–468
Bibliographic databases:
UDC: 512.7
MSC: Primary 14F05; Secondary 14J99
Language: English
Original paper language: Russian
Citation: I. V. Artamkin, “Deforming torison-free sheaves on an algebraic surface”, Math. USSR-Izv., 36:3 (1991), 449–485
Citation in format AMSBIB
\Bibitem{Art90}
\by I.~V.~Artamkin
\paper Deforming torison-free sheaves on an algebraic surface
\jour Math. USSR-Izv.
\yr 1991
\vol 36
\issue 3
\pages 449--485
\mathnet{http://mi.mathnet.ru//eng/im1081}
\crossref{https://doi.org/10.1070/IM1991v036n03ABEH002030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1072690}
\zmath{https://zbmath.org/?q=an:0723.14011|0709.14013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991IzMat..36..449A}
Linking options:
  • https://www.mathnet.ru/eng/im1081
  • https://doi.org/10.1070/IM1991v036n03ABEH002030
  • https://www.mathnet.ru/eng/im/v54/i3/p435
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:450
    Russian version PDF:147
    English version PDF:24
    References:43
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024