Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 2, Pages 305–344
DOI: https://doi.org/10.1070/IM2008v072n02ABEH002403
(Mi im1053)
 

This article is cited in 1 scientific paper (total in 1 paper)

Alexander modules of irreducible $C$-groups

Vik. S. Kulikov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We give a complete description of the Alexander modules of knotted $n$-manifolds in the sphere $S^{n+2}$ for $n\geqslant2$ and the Alexander modules of irreducible Hurwitz curves. This description is applied to investigate the properties of the first homology groups of cyclic coverings of the sphere $S^{n+2}$ and the complex projective plane $\mathbb C\mathbb P^2$ branched respectively along knotted $n$-manifolds and irreducible Hurwitz (in particular, algebraic) curves.
Received: 02.05.2006
Revised: 08.05.2007
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2008, Volume 72, Issue 2, Pages 105–150
DOI: https://doi.org/10.4213/im1053
Bibliographic databases:
Document Type: Article
UDC: 514.154+512.772-512.774+512.54.03
MSC: 14H30, 57M05, 57R17
Language: English
Original paper language: Russian
Citation: Vik. S. Kulikov, “Alexander modules of irreducible $C$-groups”, Izv. Math., 72:2 (2008), 305–344
Citation in format AMSBIB
\Bibitem{Kul08}
\by Vik.~S.~Kulikov
\paper Alexander modules of irreducible $C$-groups
\jour Izv. Math.
\yr 2008
\vol 72
\issue 2
\pages 305--344
\mathnet{http://mi.mathnet.ru//eng/im1053}
\crossref{https://doi.org/10.1070/IM2008v072n02ABEH002403}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2413652}
\zmath{https://zbmath.org/?q=an:1144.14022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256185100006}
\elib{https://elibrary.ru/item.asp?id=11570597}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44249118575}
Linking options:
  • https://www.mathnet.ru/eng/im1053
  • https://doi.org/10.1070/IM2008v072n02ABEH002403
  • https://www.mathnet.ru/eng/im/v72/i2/p105
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:426
    Russian version PDF:193
    English version PDF:10
    References:56
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024