Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 2, Pages 345–382
DOI: https://doi.org/10.1070/IM2008v072n02ABEH002404
(Mi im1049)
 

This article is cited in 3 scientific papers (total in 3 papers)

Regularity and Tresse's theorem for geometric structures

R. A. Sarkisyan, I. G. Shandra

Finance Academy under the Government of the Russian Federation
References:
Abstract: For any non-special bundle $P\to X$ of geometric structures we prove that the $k$-jet space $J^k$ of this bundle with an appropriate $k$ contains an open dense domain $U_k$ on which Tresse's theorem holds. For every $s\geqslant k$ we prove that the pre-image $\pi^{-1}(k,s)(U_k)$ of $U_k$ under the natural projection $\pi(k,s)\colon J^s\to J^k$ consists of regular points. (A point of $J^s$ is said to be regular if the orbits of the group of diffeomorphisms induced from $X$ have locally constant dimension in a neighbourhood of this point.)
Received: 10.04.2006
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2008, Volume 72, Issue 2, Pages 151–192
DOI: https://doi.org/10.4213/im1049
Bibliographic databases:
UDC: 514.763
MSC: 53A55
Language: English
Original paper language: Russian
Citation: R. A. Sarkisyan, I. G. Shandra, “Regularity and Tresse's theorem for geometric structures”, Izv. Math., 72:2 (2008), 345–382
Citation in format AMSBIB
\Bibitem{SarSha08}
\by R.~A.~Sarkisyan, I.~G.~Shandra
\paper Regularity and Tresse's theorem for geometric structures
\jour Izv. Math.
\yr 2008
\vol 72
\issue 2
\pages 345--382
\mathnet{http://mi.mathnet.ru//eng/im1049}
\crossref{https://doi.org/10.1070/IM2008v072n02ABEH002404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2413653}
\zmath{https://zbmath.org/?q=an:1148.53011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256185100007}
\elib{https://elibrary.ru/item.asp?id=11570598}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44349146215}
Linking options:
  • https://www.mathnet.ru/eng/im1049
  • https://doi.org/10.1070/IM2008v072n02ABEH002404
  • https://www.mathnet.ru/eng/im/v72/i2/p151
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:562
    Russian version PDF:219
    English version PDF:17
    References:68
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024