Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1992, Volume 38, Issue 1, Pages 107–129
DOI: https://doi.org/10.1070/IM1992v038n01ABEH002189
(Mi im1028)
 

Existence of a countable set of periodic, spherically symmetric solutions of a nonlinear wave equation

I. A. Kuzin
References:
Abstract: Under suitable conditions countable solvability of the problem $-u_{tt}+\Delta u-g(u,r,t)=h(r,t)$ in $B_\pi$, $u(x,t)=u(x,t+T)$, $T>0$, $u(\partial B_\pi,t)=0$, where $B_\pi\subset\mathbf R^N$ is a ball of radius $\pi$, is proved.
Received: 19.12.1989
Bibliographic databases:
UDC: 517.95
MSC: 35L05, 35L70
Language: English
Original paper language: Russian
Citation: I. A. Kuzin, “Existence of a countable set of periodic, spherically symmetric solutions of a nonlinear wave equation”, Math. USSR-Izv., 38:1 (1992), 107–129
Citation in format AMSBIB
\Bibitem{Kuz91}
\by I.~A.~Kuzin
\paper Existence of a countable set of periodic, spherically symmetric solutions of a~nonlinear wave equation
\jour Math. USSR-Izv.
\yr 1992
\vol 38
\issue 1
\pages 107--129
\mathnet{http://mi.mathnet.ru//eng/im1028}
\crossref{https://doi.org/10.1070/IM1992v038n01ABEH002189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1130030}
\zmath{https://zbmath.org/?q=an:0741.35040|0731.35064}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992IzMat..38..107K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992HG30700005}
Linking options:
  • https://www.mathnet.ru/eng/im1028
  • https://doi.org/10.1070/IM1992v038n01ABEH002189
  • https://www.mathnet.ru/eng/im/v55/i1/p110
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024