Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1992, Volume 38, Issue 3, Pages 647–657
DOI: https://doi.org/10.1070/IM1992v038n03ABEH002219
(Mi im1005)
 

This article is cited in 1 scientific paper (total in 1 paper)

Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields

Yu. G. Zarhin

Research computer Centre of USSR Academy of Sciences
References:
Abstract: The author studies abelian varieties with infinite torsion in infinite extensions $L$ of a number field $K$ for which the Galois group $\operatorname{Gal}(L/K)$ is a compact $l$-adic Lie group.
Received: 27.11.1989
Bibliographic databases:
UDC: 512.7+513.6
MSC: 14K15, 11G10
Language: English
Original paper language: Russian
Citation: Yu. G. Zarhin, “Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields”, Math. USSR-Izv., 38:3 (1992), 647–657
Citation in format AMSBIB
\Bibitem{Zar91}
\by Yu.~G.~Zarhin
\paper Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields
\jour Math. USSR-Izv.
\yr 1992
\vol 38
\issue 3
\pages 647--657
\mathnet{http://mi.mathnet.ru//eng/im1005}
\crossref{https://doi.org/10.1070/IM1992v038n03ABEH002219}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1129831}
\zmath{https://zbmath.org/?q=an:0769.14015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992IzMat..38..647Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992JE94100011}
Linking options:
  • https://www.mathnet.ru/eng/im1005
  • https://doi.org/10.1070/IM1992v038n03ABEH002219
  • https://www.mathnet.ru/eng/im/v55/i3/p658
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024