Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 6, Pages 1293–1316
DOI: https://doi.org/10.1070/IM1996v060n06ABEH000100
(Mi im100)
 

This article is cited in 7 scientific papers (total in 7 papers)

The Rayleigh hydrodynamical problem: a theorem on eigenfunction expansion and the stability of plane-parallel flows

S. A. Stepin

M. V. Lomonosov Moscow State University
References:
Abstract: The Rayleigh problem on the stability of plane-parallel flow of an ideal fluid leads to a singular and non-self-adjoint boundary-value problem that admits an operator formulation within the framework of the Friedrichs model. Using the technique of the stationary theory of scattering and the method of contour integration of the resolvent, a spectral analysis of the problem is carried out. The finiteness of the set of eigenvalues is proved, analytic properties of the Green's function are investigated, and the expansion in eigenfunctions corresponding to the continuous and point spectra is obtained. As an application, a time-asymptotic formula for the solution of the original non-stationary equation is derived.
Received: 11.05.1995
Bibliographic databases:
MSC: 76E05
Language: English
Original paper language: Russian
Citation: S. A. Stepin, “The Rayleigh hydrodynamical problem: a theorem on eigenfunction expansion and the stability of plane-parallel flows”, Izv. Math., 60:6 (1996), 1293–1316
Citation in format AMSBIB
\Bibitem{Ste96}
\by S.~A.~Stepin
\paper The Rayleigh hydrodynamical problem: a~theorem on eigenfunction expansion and the stability of plane-parallel flows
\jour Izv. Math.
\yr 1996
\vol 60
\issue 6
\pages 1293--1316
\mathnet{http://mi.mathnet.ru//eng/im100}
\crossref{https://doi.org/10.1070/IM1996v060n06ABEH000100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1438886}
\zmath{https://zbmath.org/?q=an:0895.76031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996XF63000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747020098}
Linking options:
  • https://www.mathnet.ru/eng/im100
  • https://doi.org/10.1070/IM1996v060n06ABEH000100
  • https://www.mathnet.ru/eng/im/v60/i6/p201
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:859
    Russian version PDF:536
    English version PDF:36
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024