Artificial Intelligence and Decision Making
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Artificial Intelligence and Decision Making:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Artificial Intelligence and Decision Making, 2016, Issue 4, Pages 47–61 (Mi iipr303)  

This article is cited in 3 scientific papers (total in 3 papers)

Natural language processing

Semantic-syntactic analysis for question answering and definition extraction

A. O. Shelmanov, M. A. Kamenskaya, M. I. Ananyeva, I. V. Smirnov

Institute for Systems Analysis of Russian Academy of Sciences
Full-text PDF (723 kB) Citations (3)
Abstract: We research the contribution of semantic-syntactic analysis to the effectiveness of solving applied text processing tasks: question-answering and definition extraction from scientific publications. The paper presents methods for solving these tasks that in addition to morphological and syntactic structure use also semantic structure of texts. We conducted the experimental evaluation of these methods and experimental comparison of two approaches to syntactic and semantic analysis: separate parsing and join semantic-syntactic parsing.
Keywords: semantic parsing, joint semantic-syntactic parsing, question-answering, information extraction, definition extraction.
English version:
Scientific and Technical Information Processing, 2017, Volume 44, Issue 6, Pages 412–423
DOI: https://doi.org/10.3103/S0147688217060089
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. O. Shelmanov, M. A. Kamenskaya, M. I. Ananyeva, I. V. Smirnov, “Semantic-syntactic analysis for question answering and definition extraction”, Artificial Intelligence and Decision Making, 2016, no. 4, 47–61; Scientific and Technical Information Processing, 44:6 (2017), 412–423
Citation in format AMSBIB
\Bibitem{SheKamAna16}
\by A.~O.~Shelmanov, M.~A.~Kamenskaya, M.~I.~Ananyeva, I.~V.~Smirnov
\paper Semantic-syntactic analysis for question answering and definition extraction
\jour Artificial Intelligence and Decision Making
\yr 2016
\issue 4
\pages 47--61
\mathnet{http://mi.mathnet.ru/iipr303}
\elib{https://elibrary.ru/item.asp?id=27723586}
\transl
\jour Scientific and Technical Information Processing
\yr 2017
\vol 44
\issue 6
\pages 412--423
\crossref{https://doi.org/10.3103/S0147688217060089}
Linking options:
  • https://www.mathnet.ru/eng/iipr303
  • https://www.mathnet.ru/eng/iipr/y2016/i4/p47
  • This publication is cited in the following 3 articles:
    1. I. V. Smirnov, “Multilevel Natural Language Processing for Intelligent Information Retrieval and Text Mining”, Sci. Tech. Inf. Proc., 51:6 (2024), 629  crossref
    2. S. N. Enikolopov, J. M. Kuznetsova, I. V. Smirnov, M. A. Stankevich, N. V. Chudova, “Creating a text analysis tool for socio-humanitarian research. P.1. Methodical and methodological aspects”, 47, no. 6, 2020, 358–364  mathnet  mathnet  crossref  crossref
    3. Ksenia Lagutina, Vladislav Larionov, Vladislav Petryakov, Nadezhda Lagutina, Ilya Paramonov, 2018 23rd Conference of Open Innovations Association (FRUCT), 2018, 217  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Artificial Intelligence and Decision Making
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :43
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025