Artificial Intelligence and Decision Making
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Artificial Intelligence and Decision Making:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Artificial Intelligence and Decision Making, 2021, Issue 4, Pages 62–74
DOI: https://doi.org/10.14357/20718594210406
(Mi iipr119)
 

Analysis of signals, audio and video information

The main approaches to the preparation of visual data for training neural network algorithms

A. G. Lapushkina, D. A. Gavrilovab, N. N. Shchelkunova, R. N. Bakeevc

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
b Lebedev Institute of Precision Mechanics and Computer Equipment, Moscow, Russia
c Foundation for Advanced Research, Moscow, Russia
Abstract: The paper analyzes the main approaches that developers of neural network algorithms use to prepare training data and form training samples. Possible methods of obtaining marked-up images are considered, including open libraries of marked-up images, specialized image markup editors, synthetic data generators, and a combined approach using GAN networks. The analysis of the main difficulties that arise in the preparation of training data, and ways to overcome them.
Keywords: neural networks, training samples, visual data, marking, simulator.
English version:
Scientific and Technical Information Processing, 2022, Volume 49, Issue 6, Pages 463–471
DOI: https://doi.org/10.3103/S0147688222060089
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Lapushkin, D. A. Gavrilov, N. N. Shchelkunov, R. N. Bakeev, “The main approaches to the preparation of visual data for training neural network algorithms”, Artificial Intelligence and Decision Making, 2021, no. 4, 62–74; Scientific and Technical Information Processing, 49:6 (2022), 463–471
Citation in format AMSBIB
\Bibitem{LapGavShc21}
\by A.~G.~Lapushkin, D.~A.~Gavrilov, N.~N.~Shchelkunov, R.~N.~Bakeev
\paper The main approaches to the preparation of visual data for training neural network algorithms
\jour Artificial Intelligence and Decision Making
\yr 2021
\issue 4
\pages 62--74
\mathnet{http://mi.mathnet.ru/iipr119}
\crossref{https://doi.org/10.14357/20718594210406}
\elib{https://elibrary.ru/item.asp?id=47367819}
\transl
\jour Scientific and Technical Information Processing
\yr 2022
\vol 49
\issue 6
\pages 463--471
\crossref{https://doi.org/10.3103/S0147688222060089}
Linking options:
  • https://www.mathnet.ru/eng/iipr119
  • https://www.mathnet.ru/eng/iipr/y2021/i4/p62
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Artificial Intelligence and Decision Making
    Statistics & downloads:
    Abstract page:30
    Full-text PDF :40
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024