|
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2006, Issue 1(35), Pages 83–88
(Mi iimi81)
|
|
|
|
Scattering problem for the one-dimensional discrete Schrödinger operator with a decreasing potential
L. E. Morozova Udmurt State University, Izhevsk
Abstract:
We consider the one-dimensional discrete Schrödinger operator $H_0+V$ acting on the space $l^2(\mathbb{Z}),$ where $V$ is a decreasing potential. The theorem of existence and uniqueness of the corresponding Lippmann–Schwinger equation is proved. We study the asymptotics behaviour of solutions of this equation.
Citation:
L. E. Morozova, “Scattering problem for the one-dimensional discrete Schrödinger operator with a decreasing potential”, Izv. IMI UdGU, 2006, no. 1(35), 83–88
Linking options:
https://www.mathnet.ru/eng/iimi81 https://www.mathnet.ru/eng/iimi/y2006/i1/p83
|
Statistics & downloads: |
Abstract page: | 242 | Full-text PDF : | 80 | References: | 47 |
|