Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2006, Issue 1(35), Pages 49–76 (Mi iimi79)  

This article is cited in 2 scientific papers (total in 2 papers)

On absolute continuity of the spectrum of three-dimensional periodic Dirac operator

L. I. Danilov

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Full-text PDF (341 kB) Citations (2)
References:
Abstract: We prove the absolute continuity of the spectrum of periodic Dirac operator $\sum\limits_{j=1}^3\hat \alpha _j\bigl( -i\, \frac {\partial}{\partial x_j}-A_j\bigr) +\hat {\mathcal V}^{(0)}+\hat {\mathcal V}^{(1)}\, ,\ x\in {\mathbb{R}}^3$, with period lattice $\Lambda \subset {\mathbb{R}}^3$ if $A\in L^{\infty}({\mathbb{R}}^3; {\mathbb{R}}^3)$, $\| \, |A|\, \| _{L^{\infty}({\mathbb{R}}^3)}<\max\limits_{\gamma \in \Lambda \backslash \{ 0\} }\pi |\gamma |^{-1}$, the Hermitian matrix-valued functions $\hat {\mathcal V}^{(s)}_{}$ belong to Zigmund class $L^3\ln ^{2+\delta}_{}L(K)$ for some $\delta >0$, where $K$ is the unit cell of the lattice $\Lambda$, and $\hat {\mathcal V}^{(s)}\hat \alpha _j=(-1)^s\hat \alpha _j\hat {\mathcal V}^{(s)}$, $s=0,1$, for all anticommuting Hermitian matrices $\hat \alpha _j^{}\, $, $\hat \alpha _j^2=\hat I$, j=1, 2, 3.
Bibliographic databases:
Document Type: Article
UDC: 517.958+517.984.56
Language: Russian
Citation: L. I. Danilov, “On absolute continuity of the spectrum of three-dimensional periodic Dirac operator”, Izv. IMI UdGU, 2006, no. 1(35), 49–76
Citation in format AMSBIB
\Bibitem{Dan06}
\by L.~I.~Danilov
\paper On absolute continuity of the spectrum of three-dimensional periodic Dirac operator
\jour Izv. IMI UdGU
\yr 2006
\issue 1(35)
\pages 49--76
\mathnet{http://mi.mathnet.ru/iimi79}
Linking options:
  • https://www.mathnet.ru/eng/iimi79
  • https://www.mathnet.ru/eng/iimi/y2006/i1/p49
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Института математики и информатики Удмуртского государственного университета
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :71
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024