|
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2006, Issue 1(35), Pages 49–76
(Mi iimi79)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On absolute continuity of the spectrum of three-dimensional periodic Dirac operator
L. I. Danilov Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Abstract:
We prove the absolute continuity of the spectrum of periodic Dirac operator $\sum\limits_{j=1}^3\hat \alpha _j\bigl( -i\, \frac {\partial}{\partial x_j}-A_j\bigr) +\hat {\mathcal V}^{(0)}+\hat {\mathcal V}^{(1)}\, ,\ x\in {\mathbb{R}}^3$, with period lattice $\Lambda \subset {\mathbb{R}}^3$ if $A\in L^{\infty}({\mathbb{R}}^3; {\mathbb{R}}^3)$, $\| \, |A|\, \| _{L^{\infty}({\mathbb{R}}^3)}<\max\limits_{\gamma \in \Lambda \backslash \{ 0\} }\pi |\gamma |^{-1}$, the Hermitian matrix-valued functions $\hat {\mathcal V}^{(s)}_{}$ belong to Zigmund class $L^3\ln ^{2+\delta}_{}L(K)$ for some $\delta >0$, where $K$ is the unit cell of the lattice $\Lambda$, and $\hat {\mathcal V}^{(s)}\hat \alpha _j=(-1)^s\hat \alpha _j\hat {\mathcal V}^{(s)}$, $s=0,1$, for all anticommuting Hermitian matrices $\hat \alpha _j^{}\, $, $\hat \alpha _j^2=\hat I$, j=1, 2, 3.
Citation:
L. I. Danilov, “On absolute continuity of the spectrum of three-dimensional periodic Dirac operator”, Izv. IMI UdGU, 2006, no. 1(35), 49–76
Linking options:
https://www.mathnet.ru/eng/iimi79 https://www.mathnet.ru/eng/iimi/y2006/i1/p49
|
Statistics & downloads: |
Abstract page: | 266 | Full-text PDF : | 71 | References: | 60 |
|