Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2023, Volume 61, Pages 42–56
DOI: https://doi.org/10.35634/2226-3594-2023-61-03
(Mi iimi441)
 

MATHEMATICS

Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables

A. R. Danilina, O. O. Kovrizhnykhab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russia
b Ural Federal University, ul. Turgeneva, 4, Yekaterinburg, 620002, Russia
References:
Abstract: In this paper, we investigate a problem of optimal control over a finite time interval for a linear autonomous system with slow and fast variables in the class of piecewise continuous controls with smooth geometric constraints in the form of a ball. We consider a terminal convex quality index that depends on slow and fast variables. We substantiate a limit relation for the vector determining the optimal control as the small parameter tends to zero. We refine the limit relation for the case of an indirect control problem with a terminal quality index, which is the sum of values of two strictly convex continuously differentiable functions, the first of which depends only on slow variables, and the second one depends only on fast variables and has a minimum at zero. In doing so, we show that the first component of the determining vector converges to the determining vector of the limit problem while the second component tends to zero. In the problem of indirect control of a system of material points in a medium with resistance, we obtain the complete asymptotics of the determining vector in powers of a small parameter.
Keywords: optimal control, singularly perturbed problem, asymptotic expansion, small parameter.
Received: 30.10.2022
Accepted: 10.01.2023
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 93C15, 93C70, 49N05
Language: Russian
Citation: A. R. Danilin, O. O. Kovrizhnykh, “Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables”, Izv. IMI UdGU, 61 (2023), 42–56
Citation in format AMSBIB
\Bibitem{DanKov23}
\by A.~R.~Danilin, O.~O.~Kovrizhnykh
\paper Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables
\jour Izv. IMI UdGU
\yr 2023
\vol 61
\pages 42--56
\mathnet{http://mi.mathnet.ru/iimi441}
\crossref{https://doi.org/10.35634/2226-3594-2023-61-03}
Linking options:
  • https://www.mathnet.ru/eng/iimi441
  • https://www.mathnet.ru/eng/iimi/v61/p42
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024