Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2023, Volume 61, Pages 27–41
DOI: https://doi.org/10.35634/2226-3594-2023-61-02
(Mi iimi440)
 

MATHEMATICS

On the exploitation of a population given by a system of linear equations with random parameters

M. S. Woldeabab, L. I. Rodinaac

a Vladimir State University, ul. Gor’kogo, 87, Vladimir, 600000, Russia
b Mai-Nefhi College of Science, Asmara, 12676, Eritrea
c National University of Science and Technology MISIS, Leninskii pr., 4, Moscow, 119049, Russia
References:
Abstract: We consider a population whose dynamics in the absence of exploitation is given by a system of linear homogeneous differential equations, and some random shares of the resource of each species at fixed times, are extracted from this population. We assume that the harvesting process can be controlled in such a way as to limit the amount of the extracted resource in order to increase the size of the next harvesting. A method for harvesting a resource is described, in which the largest value of the average time benefit is reached with a probability of one, provided that the initial amount of the population is constantly maintained or periodically restored. The harvesting modes are also considered in which the average time benefit is infinite. To prove the main assertions, we use the corollary of the law of large numbers proved by A.N. Kolmogorov. The results on the optimal resource extraction for systems of linear difference equations, a particular case of which are Leslie and Lefkovich population dynamics models, are given.
Keywords: structered populations, average time benefit, optimal exploitation, non-negative matrices, Leslie matrix.
Received: 01.02.2023
Accepted: 15.04.2023
Bibliographic databases:
Document Type: Article
UDC: 517.935
Language: Russian
Citation: M. S. Woldeab, L. I. Rodina, “On the exploitation of a population given by a system of linear equations with random parameters”, Izv. IMI UdGU, 61 (2023), 27–41
Citation in format AMSBIB
\Bibitem{WolRod23}
\by M.~S.~Woldeab, L.~I.~Rodina
\paper On the exploitation of a population given by a system of linear equations with random parameters
\jour Izv. IMI UdGU
\yr 2023
\vol 61
\pages 27--41
\mathnet{http://mi.mathnet.ru/iimi440}
\crossref{https://doi.org/10.35634/2226-3594-2023-61-02}
Linking options:
  • https://www.mathnet.ru/eng/iimi440
  • https://www.mathnet.ru/eng/iimi/v61/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024