Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2022, Volume 60, Pages 73–89
DOI: https://doi.org/10.35634/2226-3594-2022-60-05
(Mi iimi436)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Mathematical model of process of sedimentation of multicomponent suspension on the bottom and changes in the composition of bottom materials

A. I. Sukhinova, A. E. Chistyakova, A. M. Atayana, I. Yu. Kuznetsovab, V. N. Litvinova, A. V. Nikitinaab

a Don State Technical University, Gagarin square, 1, Rostov-on-Don, 344002, Russia
b Southern Federal University, ul. Bol'shaya Sadovaya, 105/42, Rostov-on-Don, 344006, Russia
References:
Abstract: The paper considers 2D and 3D models of transport of suspended particles, taking into account the following factors: movement of aqueous medium; variable density depending on the suspension concentration; multicomponent character of suspension; changes in bottom geometry as a result of suspension sedimentation. The approximation of the three-dimensional diffusion-convection equation is based on splitting schemes into two-dimensional and one-dimensional problems. In this work, we use discrete analogues of convective and diffusion transfer operators in the case of partial cell occupancy. The geometry of the computational domain is described based on the occupancy function. The difference scheme used is a linear combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients obtained by minimizing the approximation error. This scheme is designed to solve the problem of impurity transfer at large grid Peclet numbers. Based on the results of numerical experiments, conclusions are drawn about the advantage of the 3D model of multicomponent suspension transport in comparison with the 2D model. Computational experiments have been performed to simulate the process of sedimentation of a multicomponent suspension, as well as its effect on the bottom topography and changes in its composition.
Keywords: suspension transport model, variable density, Upwind Leapfrog difference scheme, Standard Leapfrog difference scheme, bottom topography change, parallel algorithms.
Funding agency Grant number
Russian Science Foundation 21-71-20050
The study was funded by Russian Science Foundation, project number 21–71–20050.
Received: 12.08.2022
Accepted: 18.10.2022
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 65Q10, 65Y05
Language: Russian
Citation: A. I. Sukhinov, A. E. Chistyakov, A. M. Atayan, I. Yu. Kuznetsova, V. N. Litvinov, A. V. Nikitina, “Mathematical model of process of sedimentation of multicomponent suspension on the bottom and changes in the composition of bottom materials”, Izv. IMI UdGU, 60 (2022), 73–89
Citation in format AMSBIB
\Bibitem{SukChiAta22}
\by A.~I.~Sukhinov, A.~E.~Chistyakov, A.~M.~Atayan, I.~Yu.~Kuznetsova, V.~N.~Litvinov, A.~V.~Nikitina
\paper Mathematical model of process of sedimentation of multicomponent suspension on the bottom and changes in the composition of bottom materials
\jour Izv. IMI UdGU
\yr 2022
\vol 60
\pages 73--89
\mathnet{http://mi.mathnet.ru/iimi436}
\crossref{https://doi.org/10.35634/2226-3594-2022-60-05}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4521462}
Linking options:
  • https://www.mathnet.ru/eng/iimi436
  • https://www.mathnet.ru/eng/iimi/v60/p73
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :147
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024