Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2022, Volume 60, Pages 58–72
DOI: https://doi.org/10.35634/2226-3594-2022-60-04
(Mi iimi435)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Algorithms of optimal covering of 2D sets with dynamical metrics

P. D. Lebedeva, A. A. Lempertb, A. L. Kazakovb

a N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620108, Russia
b Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, ul. Lermontova, 134, Irkutsk, 664033, Russia
Full-text PDF (215 kB) Citations (1)
References:
Abstract: The paper deals with the problem of constructing the thinnest covering for a convex set by a set of similar elements. As a distance between two points, we use the shortest time it takes to achieve one point from another, and the boundary of each covering circle is an isochron. Such problems arise in applications, particularly in sonar and underwater surveillance systems. To solve the problems of covering with such circles and balls, we previously proposed algorithms based both on variational principles and geometric methods. The purpose of this article is to construct coverings when the characteristics of the medium change over time. We propose a computational algorithm based on the theory of wave fronts and prove the statement about its properties. Illustrative calculations are performed.
Keywords: optimal covering, wave front, dynamical metric, Chebyshev center.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 121041300065-9
The study of A.A. Lempert was funded by the Ministry of Science and Education of the Russian Federation in the framework of the basic part, project no. 121041300065-9.
Received: 18.07.2022
Accepted: 20.08.2022
Bibliographic databases:
Document Type: Article
UDC: 514.174.3, 519.711.72
MSC: 52C15, 37N40, 05B40
Language: Russian
Citation: P. D. Lebedev, A. A. Lempert, A. L. Kazakov, “Algorithms of optimal covering of 2D sets with dynamical metrics”, Izv. IMI UdGU, 60 (2022), 58–72
Citation in format AMSBIB
\Bibitem{LebLemKaz22}
\by P.~D.~Lebedev, A.~A.~Lempert, A.~L.~Kazakov
\paper Algorithms of optimal covering of 2D sets with dynamical metrics
\jour Izv. IMI UdGU
\yr 2022
\vol 60
\pages 58--72
\mathnet{http://mi.mathnet.ru/iimi435}
\crossref{https://doi.org/10.35634/2226-3594-2022-60-04}
Linking options:
  • https://www.mathnet.ru/eng/iimi435
  • https://www.mathnet.ru/eng/iimi/v60/p58
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :70
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024