Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2022, Volume 59, Pages 114–130
DOI: https://doi.org/10.35634/2226-3594-2022-59-08
(Mi iimi431)
 

MATHEMATICS

On flexibility of constraints system under approximation of optimal control problems

A. V. Chernovab

a Nizhny Novgorod State Technical University, ul. Minina, 24, Nizhny Novgorod, 603950, Russia
b Nizhny Novgorod State University, pr. Gagarina, 23, Nizhny Novgorod, 603950, Russia
References:
Abstract: For finite-dimensional mathematical programming problems (approximating problems) being obtained by a parametric approximation of control functions in lumped optimal control problems with functional equality constraints, we introduce concepts of rigidity and flexibility for a system of constraints. The rigidity in a given admissible point is treated in the sense that this point is isolated for the admissible set; otherwise, we call a system of constraints as flexible in this point. Under using a parametric approximation for a control function with the help of quadratic exponentials (Gaussian functions) and subject to some natural hypotheses, we establish that in order to guarantee the flexibility of constraints system in a given admissible point it suffices to increase the dimension of parameter space in the approximating problem. A test of our hypotheses is illustrated by an example of the soft lunar landing problem.
Keywords: lumped optimal control problems with functional equality constraints, parametric approximation of control, rigidity and flexibility of constraints system, Gaussian functions, quadratic exponentials.
Received: 23.11.2021
Accepted: 13.02.2022
Bibliographic databases:
Document Type: Article
UDC: 517.518, 517.977.56
MSC: 41A30, 49M25, 49N90
Language: Russian
Citation: A. V. Chernov, “On flexibility of constraints system under approximation of optimal control problems”, Izv. IMI UdGU, 59 (2022), 114–130
Citation in format AMSBIB
\Bibitem{Che22}
\by A.~V.~Chernov
\paper On flexibility of constraints system under approximation of optimal control problems
\jour Izv. IMI UdGU
\yr 2022
\vol 59
\pages 114--130
\mathnet{http://mi.mathnet.ru/iimi431}
\crossref{https://doi.org/10.35634/2226-3594-2022-59-08}
Linking options:
  • https://www.mathnet.ru/eng/iimi431
  • https://www.mathnet.ru/eng/iimi/v59/p114
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025