Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2022, Volume 59, Pages 41–54
DOI: https://doi.org/10.35634/2226-3594-2022-59-04
(Mi iimi427)
 

MATHEMATICS

Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions

M. Ibrahim, V. G. Pimenov

Department of Computational Mathematics and Computer Science, Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620000, Russia
References:
Abstract: We consider a system of two space-fractional superdiffusion equations with functional general delay and Neumann boundary conditions. For this problem, an analogue of the Crank–Nicolson method is constructed, based on the shifted Gr{ü}nwald–Letnikov formulas for approximating fractional Riesz derivatives with respect to a spatial variable and using piecewise linear interpolation of discrete prehistory with extrapolation by continuation to take into account the delay effect. With the help of the Gershgorin theorem, the solvability of the difference scheme and its stability are proved. The order of convergence of the method is obtained. The results of numerical experiments are presented.
Keywords: superdiffusion equations, Neumann conditions, functional delay, Riesz derivatives, Gr{ü}nwald–Letnikov approximation, Crank–Nicholson method, order of convergence.
Funding agency Grant number
Russian Science Foundation 22-21-00075
The study of the second author was funded by the Russian Science Foundation, project No. 22–21–00075.
Received: 19.02.2022
Accepted: 20.04.2022
Bibliographic databases:
Document Type: Article
UDC: 519.63
MSC: 65M06, 65M12, 65M15
Language: English
Citation: M. Ibrahim, V. G. Pimenov, “Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions”, Izv. IMI UdGU, 59 (2022), 41–54
Citation in format AMSBIB
\Bibitem{IbrPim22}
\by M.~Ibrahim, V.~G.~Pimenov
\paper Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions
\jour Izv. IMI UdGU
\yr 2022
\vol 59
\pages 41--54
\mathnet{http://mi.mathnet.ru/iimi427}
\crossref{https://doi.org/10.35634/2226-3594-2022-59-04}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000869476800004}
Linking options:
  • https://www.mathnet.ru/eng/iimi427
  • https://www.mathnet.ru/eng/iimi/v59/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :87
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024