|
MATHEMATICS
Existence of weak solutions for a $p(x)$-Laplacian equation via topological degree
M. Ait Hammou, E. H. Rami Laboratory LAMA, Department of Mathematics, Sidi Mohamed Ben Abdellah University, Fez, Morocco
Abstract:
We consider the $p(x)$-Laplacian equation with a Dirichlet boundary value condition
\begin{equation*}
\begin{cases}
-\Delta_{p(x)}(u)+|u|^{p(x)-2}u= g(x,u,\nabla u), &x\in\Omega,\\
u=0, &x\in\partial\Omega,
\end{cases}
\end{equation*}
Using the topological degree constructed by Berkovits, we prove, under appropriate assumptions, the existence of weak solutions for this equation.
Keywords:
weak solution, Dirichlet boundary condition, variable exponent Sobolev space, topological degree, $p(x)$-Laplacian.
Received: 28.12.2021 Accepted: 26.04.2022
Citation:
M. Ait Hammou, E. H. Rami, “Existence of weak solutions for a $p(x)$-Laplacian equation via topological degree”, Izv. IMI UdGU, 59 (2022), 15–24
Linking options:
https://www.mathnet.ru/eng/iimi425 https://www.mathnet.ru/eng/iimi/v59/p15
|
Statistics & downloads: |
Abstract page: | 143 | Full-text PDF : | 88 | References: | 27 |
|