Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2022, Volume 59, Pages 3–14
DOI: https://doi.org/10.35634/2226-3594-2022-59-01
(Mi iimi424)
 

MATHEMATICS

On Weyl tensor of $\mathrm{ACR}$-manifolds of class $C_{12}$ with applications

M. Y. Abass, Q. S. Al-Zamil

Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq
References:
Abstract: In this paper, we determine the components of the Weyl tensor of almost contact metric ($\mathrm{ACR-}$) manifold of class $C_{12}$ on associated $\mathrm{G}$-structure ($\mathrm{AG}$-structure) space. As an application, we prove that the conformally flat $\mathrm{ACR}$-manifold of class $C_{12}$ with $n>2$ is an $\eta$-Einstein manifold and conclude that it is an Einstein manifold such that the scalar curvature $r$ has provided. Also, the case when $n=2$ is discussed explicitly. Moreover, the relationships among conformally flat, conformally symmetric, $\xi$-conformally flat and $\Phi$-invariant Ricci tensor have been widely considered here and consequently we determine the value of scalar curvature $r$ explicitly with other applications. Finally, we define new classes with identities analogously to Gray identities and discuss their connections with class $C_{12}$ of $\mathrm{ACR}$-manifold.
Keywords: almost contact metric manifold of class $C_{12}$, $\eta$-Einstein manifold, Weyl tensor.
Received: 11.01.2022
Accepted: 25.04.2022
Bibliographic databases:
Document Type: Article
UDC: 514.77
MSC: 53C25, 53D10, 53D15
Language: English
Citation: M. Y. Abass, Q. S. Al-Zamil, “On Weyl tensor of $\mathrm{ACR}$-manifolds of class $C_{12}$ with applications”, Izv. IMI UdGU, 59 (2022), 3–14
Citation in format AMSBIB
\Bibitem{AbaAl-22}
\by M.~Y.~Abass, Q.~S.~Al-Zamil
\paper On Weyl tensor of $\mathrm{ACR}$-manifolds of class $C_{12}$ with applications
\jour Izv. IMI UdGU
\yr 2022
\vol 59
\pages 3--14
\mathnet{http://mi.mathnet.ru/iimi424}
\crossref{https://doi.org/10.35634/2226-3594-2022-59-01}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000869476800001}
Linking options:
  • https://www.mathnet.ru/eng/iimi424
  • https://www.mathnet.ru/eng/iimi/v59/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :110
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024