Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2021, Volume 58, Pages 18–47
DOI: https://doi.org/10.35634/2226-3594-2021-58-02
(Mi iimi419)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On the spectrum of a multidimensional periodic magnetic Shrödinger operator with a singular electric potential

L. I. Danilov

Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences, ul. T. Baramzinoi, 34, Izhevsk, 426067, Russia
Full-text PDF (393 kB) Citations (1)
References:
Abstract: We prove absolute continuity of the spectrum of a periodic $n$-dimensional Schrödinger operator for $n\geqslant 4$. Certain conditions on the magnetic potential $A$ and the electric potential $V+\sum f_j\delta _{S_j}$ are supposed to be fulfilled. In particular, we can assume that the following conditions are satisfied.
(1) The magnetic potential $A\colon{\mathbb{R}}^n\to {\mathbb{R}}^n$ either has an absolutely convergent Fourier series or belongs to the space $H^q_{\mathrm {loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-1$, or to the space $C({\mathbb{R}}^n;{\mathbb{R}}^n)\cap H^q_{\mathrm {loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-2$.
(2) The function $V\colon{\mathbb{R}}^n\to \mathbb{R} $ belongs to Morrey space ${\mathfrak L}^{2,p}$, $p\in \big( \frac {n-1}2, \frac n2\big] $, of periodic functions (with a given period lattice), and
$$ \lim\limits_{\tau\to+0} \sup\limits_{0<r\leqslant\tau}\sup\limits_{x\in{\mathbb{R}}^n}r^2\bigg(\big(v(B^n_r)\big)^{-1}\int_{B^n_r(x)}|{\mathcal{V}}(y)|^p dy\bigg)^{1/p}\leqslant C, $$
where $B^n_r(x)$ is a closed ball of radius $r>0$ centered at a point $x\in{\mathbb{R}}^n$, $B^n_r=B^n_r(0)$, $v(B^n_r)$ is volume of the ball $B^n_r$, $C=C(n,p;A)>0$.
(3) $\delta_{S_j}$ are $\delta$-functions concentrated on (piecewise) $C^1$-smooth periodic hypersurfaces $S_j$, $f_j\in L^p_{\mathrm {loc}}(S_j)$, $j=1,\dots ,m$. Some additional geometric conditions are imposed on the hypersurfaces $S_j$, and these conditions determine the choice of numbers $p\geqslant n-1$. In particular, let hypersurfaces $S_j$ be $C^2$-smooth, the unit vector $e$ be arbitrarily taken from some dense set of the unit sphere $S^{n-1}$ dependent on the magnetic potential $A$, and the normal curvature of the hypersurfaces $S_j$ in the direction of the unit vector $e$ be nonzero at all points of tangency of the hypersurfaces $S_j$ and the lines $\{x_0+te\colon t\in\mathbb{R}\}$, $x_0\in{\mathbb{R}}^n$. Then we can choose the number $p>\frac {3n}2-3$, $n\geqslant 4$.
Keywords: absolute continuity of the spectrum, periodic Schrödinger operator.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 121030100005-1
The study was funded by the financial program no. 121030100005-1.
Received: 19.05.2021
Bibliographic databases:
Document Type: Article
UDC: 517.958, 517.984.56
MSC: 35P05
Language: Russian
Citation: L. I. Danilov, “On the spectrum of a multidimensional periodic magnetic Shrödinger operator with a singular electric potential”, Izv. IMI UdGU, 58 (2021), 18–47
Citation in format AMSBIB
\Bibitem{Dan21}
\by L.~I.~Danilov
\paper On the spectrum of a multidimensional periodic magnetic Shr\"{o}dinger operator with a singular electric potential
\jour Izv. IMI UdGU
\yr 2021
\vol 58
\pages 18--47
\mathnet{http://mi.mathnet.ru/iimi419}
\crossref{https://doi.org/10.35634/2226-3594-2021-58-02}
Linking options:
  • https://www.mathnet.ru/eng/iimi419
  • https://www.mathnet.ru/eng/iimi/v58/p18
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024