|
This article is cited in 1 scientific paper (total in 1 paper)
On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential
L. I. Danilov Udmurt Federal
Research Center, Ural Branch of the Russian Academy of Sciences, ul. T. Baramzinoi, 34, Izhevsk,
426067, Russia
Abstract:
This paper is concerned with a two-dimensional Dirac operator $\widehat \sigma _1\bigl( -i\,
\frac {\partial }{\partial x_1}\bigr) +\widehat \sigma _2\bigl( -i\, \frac {\partial }{\partial x_2}-Bx_1\bigr)
+m\widehat \sigma _3+V\widehat I_2$ with a uniform magnetic field $B$ where $\widehat \sigma _j$, $j=1,2,3$, are the
Pauli matrices and $\widehat I_2$ is the unit $2\times 2$-matrix. The function $m$ and the electric potential $V$
belong to the space $L^p_{\Lambda }({\mathbb R}^2;{\mathbb R})$ of $\Lambda $-periodic functions from the $L^p_{\mathrm {loc}}({\mathbb R}^2;{\mathbb R})$, $p>2$, and we suppose that for the magnetic flux $\eta =(2\pi )^{-1}Bv(K)\in \mathbb{Q} $ where $v(K)$ is the area of an
elementary cell $K$ of the period lattice $\Lambda $. For any nonincreasing function $(0,1]\ni \varepsilon
\mapsto {\mathcal R}(\varepsilon )\in (0,+\infty )$ for which ${\mathcal R}(\varepsilon )\to +\infty $ as
$\varepsilon \to +0$ let ${\mathfrak M}^p_{\Lambda }({\mathcal R}(\cdot ))$ be the set of functions $m\in
L^p_{\Lambda }({\mathbb R}^2;{\mathbb R})$ such that for every $\varepsilon \in (0,1]$ there exists a real-valued
$\Lambda $-periodic trigonometric polynomial ${\mathcal P}^{(\varepsilon )}$ such that $\| m-{\mathcal P}
^{(\varepsilon )}\| _{L^p(K)}<\varepsilon $ and for Fourier coefficients ${\mathcal P}^{(\varepsilon )}_Y=0$
provided $|Y|>{\mathcal R}(\varepsilon )$. It is proved that for any function ${\mathcal R}(\cdot )$ in question there is
a dense $G_{\delta }$-set ${\mathcal O}$ in the Banach space $(L^p_{\Lambda }({\mathbb R}^2;{\mathbb R}),\| \cdot \| _{L^p(K)})$ such
that for every electric potential $V\in {\mathcal O}$, for every function $m\in {\mathfrak M}^p_{\Lambda }({\mathcal R}
(\cdot ))$, and for every uniform magnetic field $B$ with the flux $\eta \in \mathbb{Q} $ the spectrum of the Dirac operator
is absolutely continuous.
Keywords:
two-dimensional Dirac operator, periodic electric potential, homogeneous magnetic field,
spectrum.
Received: 24.10.2019
Citation:
L. I. Danilov, “On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential”, Izv. IMI UdGU, 54 (2019), 3–26
Linking options:
https://www.mathnet.ru/eng/iimi378 https://www.mathnet.ru/eng/iimi/v54/p3
|
Statistics & downloads: |
Abstract page: | 291 | Full-text PDF : | 113 | References: | 37 |
|