Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2019, Volume 53, Pages 127–137
DOI: https://doi.org/10.20537/2226-3594-2019-53-11
(Mi iimi376)
 

Structural theorem for $gr$-injective modules over $gr$-noetherian $G$-graded commutative rings and local cohomology functors

L. Lu

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
References:
Abstract: It is well known that the decomposition of injective modules over noetherian rings is one of the most aesthetic and important results in commutative algebra. Our aim is to prove similar results for graded noetherian rings. In this paper, we will study the structure theorem for $gr$-injective modules over $gr$-noetherian $G$-graded commutative rings, give a definition of the $gr$-Bass numbers, and study their properties. We will show that every $gr$-injective module has an indecomposable decomposition. Let $R$ be a $gr$-noetherian graded ring and $M$ be a $gr$-finitely generated $R$-module, we will give a formula for expressing the Bass numbers using the functor $Ext$. We will define the section functor $\Gamma_{V}$ with support in a specialization-closed subset $V$ of $Spec^{gr}(R)$ and the abstract local cohomology functor. Finally, we will show that a left exact radical functor $F$ is of the form $\Gamma_V$ for a specialization-closed subset $V$.
Keywords: graded commutative rings, $gr$-Bass numbers, local cohomology functors, derived categories, radical functors.
Funding agency
This work was supported by the Chinese Scholarship Council.
Received: 05.04.2019
Bibliographic databases:
Document Type: Article
UDC: 512.7
MSC: 13D45, 14B15
Language: English
Citation: L. Lu, “Structural theorem for $gr$-injective modules over $gr$-noetherian $G$-graded commutative rings and local cohomology functors”, Izv. IMI UdGU, 53 (2019), 127–137
Citation in format AMSBIB
\Bibitem{Lu19}
\by L.~Lu
\paper Structural theorem for $gr$-injective modules over $gr$-noetherian $G$-graded commutative rings and local cohomology functors
\jour Izv. IMI UdGU
\yr 2019
\vol 53
\pages 127--137
\mathnet{http://mi.mathnet.ru/iimi376}
\crossref{https://doi.org/10.20537/2226-3594-2019-53-11}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000487290700011}
\elib{https://elibrary.ru/item.asp?id=38503204}
Linking options:
  • https://www.mathnet.ru/eng/iimi376
  • https://www.mathnet.ru/eng/iimi/v53/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :220
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024