Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2018, Volume 52, Pages 86–102
DOI: https://doi.org/10.20537/2226-3594-2018-52-07
(Mi iimi363)
 

This article is cited in 12 scientific papers (total in 12 papers)

Ultrafilters and maximal linked systems: basic properties and topological constructions

A. G. Chentsovab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russia
b Ural Federal University, ul. Mira, 19, Yekaterinburg, 600002, Russia
References:
Abstract: Ultrafilters (maximal filters) and maximal linked systems on $\pi$-systems with “zero” and “unit” are considered. Different variants of topological equipment and the resulting bitopological spaces are discussed. It is noted that the bitopological space of ultrafilters can be considered as a subspace of the bitopological space of the maximal linked systems. Necessary and sufficient conditions for maximality of the filters and the properties characterizing maximal linked systems which are not ultrafilters are established. Some conditions sufficient for existence of such systems are clarified. Conditions under which bitopological spaces of ultrafilters and maximal linked systems are degenerate (topologies defining the corresponding bitopological space coincide) and the conditions that guarantee nondegeneracy are found. A new variant of the density property of the initial set in the ultrafilter space with topology of Wallman type is given. This variant can be used in constructing extensions for abstract attainability problems with asymptotic constraints.
Keywords: bitopological space, maximal linked systems, ultrafilter.
Received: 14.08.2018
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 28A33
Language: Russian
Citation: A. G. Chentsov, “Ultrafilters and maximal linked systems: basic properties and topological constructions”, Izv. IMI UdGU, 52 (2018), 86–102
Citation in format AMSBIB
\Bibitem{Che18}
\by A.~G.~Chentsov
\paper Ultrafilters and maximal linked systems: basic properties and topological constructions
\jour Izv. IMI UdGU
\yr 2018
\vol 52
\pages 86--102
\mathnet{http://mi.mathnet.ru/iimi363}
\crossref{https://doi.org/10.20537/2226-3594-2018-52-07}
\elib{https://elibrary.ru/item.asp?id=36508458}
Linking options:
  • https://www.mathnet.ru/eng/iimi363
  • https://www.mathnet.ru/eng/iimi/v52/p86
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:414
    Full-text PDF :170
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024