Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2018, Volume 51, Pages 52–78
DOI: https://doi.org/10.20537/2226-3594-2018-51-03
(Mi iimi354)
 

Exact solution of an optimization problem generated by the three-dimensional Laplace equation

A. N. Mzedawee, V. I. Rodionov

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
References:
Abstract: A one-parameter family of finite-dimensional spaces consisting of special three-dimensional splines of Lagrangian type is defined (the parameter $N$ is related to the dimension of the spline space). The solution of the boundary value problem for the Laplace equation given in a three-dimensional parallelepiped admits a representation in the form of a sum of four summands: a function linear in each of the three variables, and solutions of three particular boundary value problems generated by the original equation. In turn, these problems give rise to three problems of minimizing the functionals of residuals given in the indicated spline spaces. This decomposition allows one to study only one of the three optimization problems (the other two are symmetric in nature). A system of linear algebraic equations is obtained with respect to the coefficients of the optimal spline that gives the smallest discrepancy. It is shown that the system has a unique solution. The numerical solution of the system reduces to the implementation of the sweep method (the stability of this method holds). Numerical experiments show that with increasing $N,$ the minimum of the residual functional tends to zero.
Keywords: three-dimensional Laplace equation, interpolation, multivariate spline.
Received: 27.04.2018
Bibliographic databases:
Document Type: Article
UDC: 519.651, 517.518.823
MSC: 41A15
Language: Russian
Citation: A. N. Mzedawee, V. I. Rodionov, “Exact solution of an optimization problem generated by the three-dimensional Laplace equation”, Izv. IMI UdGU, 51 (2018), 52–78
Citation in format AMSBIB
\Bibitem{MzeRod18}
\by A.~N.~Mzedawee, V.~I.~Rodionov
\paper Exact solution of an optimization problem generated by the three-dimensional Laplace equation
\jour Izv. IMI UdGU
\yr 2018
\vol 51
\pages 52--78
\mathnet{http://mi.mathnet.ru/iimi354}
\crossref{https://doi.org/10.20537/2226-3594-2018-51-03}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3855923}
\zmath{https://zbmath.org/?q=an:1426.41010}
\elib{https://elibrary.ru/item.asp?id=35269039}
Linking options:
  • https://www.mathnet.ru/eng/iimi354
  • https://www.mathnet.ru/eng/iimi/v51/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :184
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024