Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2017, Volume 50, Pages 29–35
DOI: https://doi.org/10.20537/2226-3594-2017-50-04
(Mi iimi345)
 

A new approach to cooperation in a conflict with four members

V. I. Zhukovskiia, M. Larbanib, L. V. Smirnovac

a Department of Optimal Control, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
b School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
c Moscow State Regional Institute of Humanities, ul. Zelenaya, 22, Orekhovo-Zuevo, 142611, Russia
References:
Abstract: This paper introduces the concept of coalition rationality. The coalition equilibrium situation (CES) in the conflict of four persons under uncertainty is formalized by unifying the notions of individual and collective rationality (from the theory of cooperative games without side payments) and the definition of coalition rationality given in this paper. Then sufficient conditions for the existence of CES, which reduce to construction of the saddle point of Germeier convolution of payoff function guarantee, are established. Next, according to approach of E. Borel, J. von Neumann, and J. Nash, the existence of CES in mixed strategies is proved under “usual” restrictions for mathematical games theory such as compactness of sets of uncertainties and strategies of players and continuity of payoff functions. In conclusion, the article suggests possible directions for further research.
Keywords: cooperative game without side payments, uncertainty, guarantee, mixed strategy, Germeier convolution, saddle point, Nash and Berge equilibrium.
Received: 16.07.2017
Bibliographic databases:
Document Type: Article
UDC: 519.834
MSC: 91A12
Language: Russian
Citation: V. I. Zhukovskii, M. Larbani, L. V. Smirnova, “A new approach to cooperation in a conflict with four members”, Izv. IMI UdGU, 50 (2017), 29–35
Citation in format AMSBIB
\Bibitem{ZhuLarSmi17}
\by V.~I.~Zhukovskii, M.~Larbani, L.~V.~Smirnova
\paper A new approach to cooperation in a conflict with four members
\jour Izv. IMI UdGU
\yr 2017
\vol 50
\pages 29--35
\mathnet{http://mi.mathnet.ru/iimi345}
\crossref{https://doi.org/10.20537/2226-3594-2017-50-04}
\elib{https://elibrary.ru/item.asp?id=32260606}
Linking options:
  • https://www.mathnet.ru/eng/iimi345
  • https://www.mathnet.ru/eng/iimi/v50/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :174
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024