Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2015, Issue 2(46), Pages 228–235 (Mi iimi323)  

On the analogue of Wintner's theorem for a controlled elliptic equation

A. V. Chernovab

a Nizhni Novgorod State University named after N. I. Lobachevskii, pr. Gagarina, 23, Nizhni Novgorod, 603950, Russia
b Nizhni Novgorod State Technical University named after R. E. Alekseev, ul. Minina, 24, Nizhni Novgorod, 603950, Russia
References:
Abstract: For a homogeneous Dirichlet problem associated with a controlled semilinear partial differential elliptic equation of the second order, referred as a stationary diffusion–reaction equation, we state analogue of the classical Wintner's theorem concerning the solvability of the Cauchy problem for an ordinary differential equation.
Keywords: controlled semilinear elliptic equation, total preservation of solvability.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1727
02.В.49.21.0003
Received: 01.09.2015
Bibliographic databases:
Document Type: Article
UDC: 517.977.56
MSC: 35B30, 35B37, 47J35
Language: Russian
Citation: A. V. Chernov, “On the analogue of Wintner's theorem for a controlled elliptic equation”, Izv. IMI UdGU, 2015, no. 2(46), 228–235
Citation in format AMSBIB
\Bibitem{Che15}
\by A.~V.~Chernov
\paper On the analogue of Wintner's theorem for a controlled elliptic equation
\jour Izv. IMI UdGU
\yr 2015
\issue 2(46)
\pages 228--235
\mathnet{http://mi.mathnet.ru/iimi323}
\elib{https://elibrary.ru/item.asp?id=25030050}
Linking options:
  • https://www.mathnet.ru/eng/iimi323
  • https://www.mathnet.ru/eng/iimi/y2015/i2/p228
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Института математики и информатики Удмуртского государственного университета
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024