Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2015, Issue 2(46), Pages 45–52 (Mi iimi301)  

This article is cited in 1 scientific paper (total in 1 paper)

Recurrent and almost automorphic selections of multivalued mappings

L. I. Danilov

Physical Technical Institute of the Ural Branch of the Russian Academy of Sciences, ul. Kirova, 132, Izhevsk, 426001, Russia
Full-text PDF (250 kB) Citations (1)
References:
Abstract: Let $(U,\rho )$ be a complete metric space and $({\mathrm {cl}}_{\, b}\, U,{\mathrm {dist}})$ be the metric space of nonempty closed bounded subsets of the space $U$ with the Hausdorff metric ${\mathrm {dist}}$. On the set $M({\mathbb R},U)$ of strongly measurable functions $f\colon{\mathbb R}\to U$ we introduce the metric $d^{(\rho )}$ such that the convergence in this metric is equivalent to the convergence in Lebesgue measure on every closed interval $[-l,l]$, $l>0$. The metric $d^{({\mathrm {dist}})}$ on the set $M({\mathbb R},{\mathrm {cl}}_{\, b}\, U)$ of strongly measurable multivalued mappings $f\colon{\mathbb R}\to {\mathrm {cl}}_{\, b}\, U$ (which are considered as functions with the range in ${\mathrm {cl}}_{\, b}\, U$) is defined by analogy with the metric $d^{(\rho )}.$ The spaces $M({\mathbb R},U)$ and $M({\mathbb R},{\mathrm {cl}}_{\, b}\, U)$ are the phase spaces of the dynamical systems of translations. For a multivalued Stepanov-like recurrent mapping $F\in {\mathcal R}({\mathbb R},{\mathrm {cl}}_{\, b}\, U)\subseteq M({\mathbb R},{\mathrm {cl}}_{\, b}\, U)$ and for any $x_0\in U$ and any nondecreasing function $\eta \colon[0,+\infty )\to [0,+\infty )$ for which $\eta (0)=0$ and $\eta (\xi )>0$ for $\xi >0$, it is proved that there exists a homomorphism of dynamical systems ${\mathcal F}:\overline {{\mathrm {orb}}\, F}=\overline {\{ F(\cdot +t):t\in {\mathbb R}\} }\to M({\mathbb R},U)$ such that $({\mathcal F}F^{\, \prime })(t)\in F^{\, \prime }(t)$ and $\rho (({\mathcal F}F^{\, \prime })(t),x_0)\leqslant \rho (x_0,F^{\, \prime }(t))+\eta \bigl( \rho (x_0,F^{\, \prime }(t))\bigr) $ for all $F^{\, \prime }\in \overline {{\mathrm {orb}}\, F}$ and a.e. $t\in {\mathbb R}$. Furthermore, the functions ${\mathcal F}F^{\, \prime }$ are Stepanov-like recurrent. If the multivalued mapping $F$ is Stepanov-like almost automorphic, then the function ${\mathcal F}F$ is Stepanov-like almost automorphic as well.
Keywords: recurrent function, almost automorphic function, selector, multivalued mapping.
Received: 10.09.2015
Bibliographic databases:
Document Type: Article
UDC: 517.518.6
MSC: 42A75, 54C65
Language: Russian
Citation: L. I. Danilov, “Recurrent and almost automorphic selections of multivalued mappings”, Izv. IMI UdGU, 2015, no. 2(46), 45–52
Citation in format AMSBIB
\Bibitem{Dan15}
\by L.~I.~Danilov
\paper Recurrent and almost automorphic selections of multivalued mappings
\jour Izv. IMI UdGU
\yr 2015
\issue 2(46)
\pages 45--52
\mathnet{http://mi.mathnet.ru/iimi301}
\elib{https://elibrary.ru/item.asp?id=25030021}
Linking options:
  • https://www.mathnet.ru/eng/iimi301
  • https://www.mathnet.ru/eng/iimi/y2015/i2/p45
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Института математики и информатики Удмуртского государственного университета
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :56
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024