Bulletin of Irkutsk State University. Series Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bulletin of Irkutsk State University. Series Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Bulletin of Irkutsk State University. Series Mathematics, 2012, Volume 5, Issue 2, Pages 81–89 (Mi iigum69)  

Calculation of the regularized trace for the Sturm–Liouville problem with spectral parameter in the boundary conditions

A. E. Atkin, G. P. Atkina

Ulyanovsk State University
References:
Abstract: In this paper we calculate first regularized trace of boundary value problem for the regular Sturm–Liouville operator with the eigenvalue parameter polinomially contained in the bounary conditions.
Keywords: trace of operator; Sturm–Liouville operator; spectral parameter in boundary conditions.
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. E. Atkin, G. P. Atkina, “Calculation of the regularized trace for the Sturm–Liouville problem with spectral parameter in the boundary conditions”, Bulletin of Irkutsk State University. Series Mathematics, 5:2 (2012), 81–89
Citation in format AMSBIB
\Bibitem{AtkAtk12}
\by A.~E.~Atkin, G.~P.~Atkina
\paper Calculation of the regularized trace for the Sturm--Liouville problem with spectral parameter in the boundary conditions
\jour Bulletin of Irkutsk State University. Series Mathematics
\yr 2012
\vol 5
\issue 2
\pages 81--89
\mathnet{http://mi.mathnet.ru/iigum69}
Linking options:
  • https://www.mathnet.ru/eng/iigum69
  • https://www.mathnet.ru/eng/iigum/v5/i2/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024