Loading [MathJax]/jax/output/SVG/config.js
Bulletin of Irkutsk State University. Series Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bulletin of Irkutsk State University. Series Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Bulletin of Irkutsk State University. Series Mathematics, 2023, Volume 45, Pages 89–103
DOI: https://doi.org/10.26516/1997-7670.2023.45.89
(Mi iigum536)
 

This article is cited in 4 scientific papers (total in 4 papers)

Integro-differential equations and functional analysis

Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions

Y. Talaeia, S. Noeiaghdambc, H. Hosseinzadehd

a University of Mohaghegh Ardabili, Ardabil, Iran
b Irkutsk National Research Technical University, Irkutsk, Russian Federation
c South Ural State University, Chelyabinsk, Russian Federation
d Ardabil Branch, Islamic Azad University, Ardabil, Iran
Full-text PDF (738 kB) Citations (4)
References:
Abstract: This paper introduces a new numerical technique based on the implicit spectral collocation method and the fractional Chelyshkov basis functions for solving the fractional Fredholm integro-differential equations. The framework of the proposed method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton's iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with non-smooth solutions.
Keywords: fractional integro-differential equations, fractional order Chelyshkov polynomials, spectral collocation method, convergence analysis.
Received: 14.02.2023
Revised: 21.04.2023
Accepted: 10.05.2023
Document Type: Article
UDC: 518.517
Language: English
Citation: Y. Talaei, S. Noeiaghdam, H. Hosseinzadeh, “Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions”, Bulletin of Irkutsk State University. Series Mathematics, 45 (2023), 89–103
Citation in format AMSBIB
\Bibitem{TalNoeHos23}
\by Y.~Talaei, S.~Noeiaghdam, H.~Hosseinzadeh
\paper Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions
\jour Bulletin of Irkutsk State University. Series Mathematics
\yr 2023
\vol 45
\pages 89--103
\mathnet{http://mi.mathnet.ru/iigum536}
\crossref{https://doi.org/10.26516/1997-7670.2023.45.89}
Linking options:
  • https://www.mathnet.ru/eng/iigum536
  • https://www.mathnet.ru/eng/iigum/v45/p89
  • This publication is cited in the following 4 articles:
    1. Nouria Arar, Bouchra Deghdough, Souad Dekkiche, Zineb Torch, A. M. Nagy, “Numerical Solution of the Burgers' Equation Using Chelyshkov Polynomials”, Int. J. Appl. Comput. Math, 10:1 (2024)  crossref
    2. A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud, “Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis”, MATH, 9:4 (2024), 7973  crossref
    3. Muhammad Sarwar, Aiman Mukheimer, Syed Khayyam Shah, Arshad Khan, “Existence of solutions of fractal fractional partial differential equations through different contractions”, MATH, 9:5 (2024), 12399  crossref
    4. V. M. Abdullaev, “K resheniyu nagruzhennykh differentsialnykh uravnenii s nelokalnymi usloviyami”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 49 (2024), 45–62  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :63
    References:22
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025