Bulletin of Irkutsk State University. Series Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bulletin of Irkutsk State University. Series Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Bulletin of Irkutsk State University. Series Mathematics, 2014, Volume 9, Pages 75–90 (Mi iigum201)  

Power System Parameters Forecasting Using Hilbert–Huang Transform and Machine Learning

V. G. Kurbatskya, V. A. Spiryaeva, N. V. Tomina, P. Leahyb, D. N. Sidorovca, A. V. Zhukovc

a Energy Systems Institute, Siberian Branch of Russian Academy of Sciences
b University College Cork
c Institute of Mathematics, Economics and Informatics, Irkutsk State University
References:
Abstract: A novel hybrid data-driven approach is developed for forecasting power system parameters with the goal of increasing the efficiency of short-term forecasting studies for non-stationary time-series. The proposed approach is based on mode decomposition and a feature analysis of initial retrospective data using the Hilbert–Huang transform and machine learning algorithms. The random forests and gradient boosting trees learning techniques were examined. The decision tree techniques were used to rank the importance of variables employed in the forecasting models. The Mean Decrease Gini index is employed as an impurity function. The resulting hybrid forecasting models employ the radial basis function neural network and support vector regression.
Apart from introduction and references the paper is organized as follows. The second section presents the background and the review of several approaches for short-term forecasting of power system parameters. In the third section a hybrid machine learning-based algorithm using Hilbert–Huang transform is developed for short-term forecasting of power system parameters. Fourth section describes the decision tree learning algorithms used for the issue of variables importance. Finally in section six the experimental results in the following electric power problems are presented: active power flow forecasting, electricity price forecasting and for the wind speed and direction forecasting.
Keywords: time series, forecasting, integral transforms, ANN, SVM, machine learning, boosting, singular integral, feature analysis.
Document Type: Article
UDC: 518.517
Language: English
Citation: V. G. Kurbatsky, V. A. Spiryaev, N. V. Tomin, P. Leahy, D. N. Sidorov, A. V. Zhukov, “Power System Parameters Forecasting Using Hilbert–Huang Transform and Machine Learning”, Bulletin of Irkutsk State University. Series Mathematics, 9 (2014), 75–90
Citation in format AMSBIB
\Bibitem{KurSpiTom14}
\by V.~G.~Kurbatsky, V.~A.~Spiryaev, N.~V.~Tomin, P.~Leahy, D.~N.~Sidorov, A.~V.~Zhukov
\paper Power System Parameters Forecasting Using Hilbert--Huang Transform and Machine Learning
\jour Bulletin of Irkutsk State University. Series Mathematics
\yr 2014
\vol 9
\pages 75--90
\mathnet{http://mi.mathnet.ru/iigum201}
Linking options:
  • https://www.mathnet.ru/eng/iigum201
  • https://www.mathnet.ru/eng/iigum/v9/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :123
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024