Bulletin of Irkutsk State University. Series Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bulletin of Irkutsk State University. Series Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Bulletin of Irkutsk State University. Series Mathematics, 2014, Volume 8, Pages 71–85 (Mi iigum188)  

This article is cited in 3 scientific papers (total in 3 papers)

An Improvement Method for Hierarchical Model with Network Structure

V. I. Gurmana, I. V. Rasinaa, O. V. Feskoa, O. V. Usenkob

a Ailamazyan Program Systems Institute of RAS, Pereslavl-Zalessky, Yaroslavl Region, Russia
b Siberian Academy of Law, Economics and Management, Irkutsk, 664025, Surikov str., 21
Full-text PDF (386 kB) Citations (3)
References:
Abstract: The systems of heterogeneous structure are widespread in practice, currently such systems are the subject of intense study by the representatives of different scientific schools and directions. These systems include systems with variable structure, discrete-continuous, logic-dynamic, hybrid and heterogeneous dynamic systems. In this article the systems of heterogeneous network structure are considered. For modelling and research the hierarchical approach is used: two-level model is created, the lower the level of which presents different controlled differential systems of homogeneous structure and the upper — network of operators, providing purposeful interaction of continuous subsystems. This model can be seen as a further development of the discrete-continuous model, proposed and investigated in a number of works of the authors. The optimal control problem is formulated, the sufficient conditions of optimality are derived — analogues of known the Krotov's sufficient conditions of optimality, which involve resolving functions type of Krotov for each level. On the basis of these conditions and the localization principle a method of monotone iterative improvements with linear with respect to the state of the Krotov-type functions is constructed. The involvement of the second derivatives on control variables in its structure allows to take into account ravine surface structure of functional. The method like the model has a two-level structure. On the lower level appears traditional conjugated system of differential equations for the coefficients of resolving functions, whereas on the upper level, conjugated variables are determined from the linear algebraic system of equations. As an example it is considered the optimization of water protection measures in the river basin for a simplified model with an operator tree. The prototype is the lower flows of the Selenga river. For this problem a two-level network model is built and the proposed algorithm is applied. The results of calculations are represented.
Keywords: control improvement, hierarchical model, network of operators.
Document Type: Article
UDC: 518.517
Language: Russian
Citation: V. I. Gurman, I. V. Rasina, O. V. Fesko, O. V. Usenko, “An Improvement Method for Hierarchical Model with Network Structure”, Bulletin of Irkutsk State University. Series Mathematics, 8 (2014), 71–85
Citation in format AMSBIB
\Bibitem{GurRasFes14}
\by V.~I.~Gurman, I.~V.~Rasina, O.~V.~Fesko, O.~V.~Usenko
\paper An Improvement Method for Hierarchical Model with Network Structure
\jour Bulletin of Irkutsk State University. Series Mathematics
\yr 2014
\vol 8
\pages 71--85
\mathnet{http://mi.mathnet.ru/iigum188}
Linking options:
  • https://www.mathnet.ru/eng/iigum188
  • https://www.mathnet.ru/eng/iigum/v8/p71
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :80
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024