Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2021, Volume 15, Issue 3, Pages 9–15
DOI: https://doi.org/10.14357/19922264210302
(Mi ia738)
 

This article is cited in 2 scientific papers (total in 2 papers)

Filtering of Markov jump processes given composite observations II: Numerical algorithm

A. V. Borisovabc, D. Kh. Kazanchyand

a Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
b Moscow Aviation Institute (National Research University), 4 Volokolamskoe Shosse, Moscow 125080, Russian Federation
c Moscow Center for Fundamental and Applied Mathematics, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
d Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
Full-text PDF (216 kB) Citations (2)
References:
Abstract: The note represents the second, final part of the series initiated by the article Borisov, A., and D. Kazanchyan. 2021. Filtering of Markov jump processes given composite observations I: Exact solution. Informatika i ee primeneniya — Inform. Appl. 15(2):12–19. The authors propose a new numerical algorithm of the optimal state estimation for the Markov jump processes given observable both the counting processes and the diffusion ones with the multiplicative noises. The authors approximate the initial continuous-time estimation problem by a sequence of the corresponding filtering problems given the time-discretized observations. The paper contains the explicit recursive form of the discretized estimate and introduces its one-step precision characteristic along with dependence of the characteristics on the utilized numerical estimation scheme.
Keywords: Markov jump process, optimal filtering, multiplicative observation noises, time-discretized observations, approximation precision.
Funding agency Grant number
Russian Foundation for Basic Research 19-07-00187_а
The work was supported in part by the Russian Foundation for Basic Research (project 19-07-00187 A). The research was conducted in accordance with the program of the Moscow Center for Fundamental and Applied Mathematics.
Received: 05.03.2021
Document Type: Article
Language: Russian
Citation: A. V. Borisov, D. Kh. Kazanchyan, “Filtering of Markov jump processes given composite observations II: Numerical algorithm”, Inform. Primen., 15:3 (2021), 9–15
Citation in format AMSBIB
\Bibitem{BorKaz21}
\by A.~V.~Borisov, D.~Kh.~Kazanchyan
\paper Filtering of Markov jump processes given composite observations~II: Numerical algorithm
\jour Inform. Primen.
\yr 2021
\vol 15
\issue 3
\pages 9--15
\mathnet{http://mi.mathnet.ru/ia738}
\crossref{https://doi.org/10.14357/19922264210302}
Linking options:
  • https://www.mathnet.ru/eng/ia738
  • https://www.mathnet.ru/eng/ia/v15/i3/p9
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024