Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2020, Volume 14, Issue 2, Pages 98–103
DOI: https://doi.org/10.14357/19922264200214
(Mi ia668)
 

This article is cited in 1 scientific paper (total in 1 paper)

Solution of the unconditional extremal problem for a linear-fractional integral functional dependent on the parameter

P. V. Shnurkova, K. A. Adamovab

a National Research University Higher School of Economics, 34 Tallinskaya Str., Moscow 123458, Russian Federation
b Academician Pilyugin Center, 1 Vvedenskogo Str., Moscow, 117342, Russian Federation
Full-text PDF (160 kB) Citations (1)
References:
Abstract: The paper is devoted to the study of the unconditional extremal problem for a fractional linear integral functional defined on a set of probability distributions. In contrast to results proved earlier, the integrands of the integral expressions in the numerator and the denominator in the problem under consideration depend on a real optimization parameter vector. Thus, the optimization problem is studied on the Cartesian product of a set of probability distributions and a set of admissible values of a real parameter vector. Three statements on the extremum of a fractional linear integral functional are proved. It is established that, in all the variants, the solution of the *original problem is completely determined by the extremal properties of the test function of the linear-fractional integral functional; this function is the ratio of the integrands of the numerator and the denominator. Possible applications of the results obtained to problems of optimal control of stochastic systems are described.
Keywords: linear-fractional integral functional, unconditional extremal problem for a fractional linear integral functional, test function, optimal control problems for Markov and semi-Markov random processes.
Received: 15.04.2020
Document Type: Article
Language: Russian
Citation: P. V. Shnurkov, K. A. Adamova, “Solution of the unconditional extremal problem for a linear-fractional integral functional dependent on the parameter”, Inform. Primen., 14:2 (2020), 98–103
Citation in format AMSBIB
\Bibitem{ShnAda20}
\by P.~V.~Shnurkov, K.~A.~Adamova
\paper Solution of the unconditional extremal problem for a~linear-fractional integral functional dependent on the parameter
\jour Inform. Primen.
\yr 2020
\vol 14
\issue 2
\pages 98--103
\mathnet{http://mi.mathnet.ru/ia668}
\crossref{https://doi.org/10.14357/19922264200214}
Linking options:
  • https://www.mathnet.ru/eng/ia668
  • https://www.mathnet.ru/eng/ia/v14/i2/p98
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :118
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024