Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2020, Volume 14, Issue 2, Pages 10–18
DOI: https://doi.org/10.14357/19922264200202
(Mi ia656)
 

This article is cited in 5 scientific papers (total in 5 papers)

Numerical schemes of Markov jump process filtering given discretized observations III: Multiplicative noises case

A. V. Borisov

Institute of Informatics Problems, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Full-text PDF (332 kB) Citations (5)
References:
Abstract: The paper presents the final part of investigations initialized in the papers Borisov, A. 2019. Numerical schemes of Markov jump process filtering given discretized observations I: Accuracy characteristics. Inform. Appl. 13(4):68–75 and Borisov, A. 2020. Numerical schemes of Markov jump process filtering given discretized observations II: Multiplicative noises case. Inform. Appl. 14(1):17–23. Relying on the theoretical results, this paper presents a numerical algorithm of the state filtering of homogeneous Markov jump processes (MJP) given indirect noisy continuous time observations discretized by time. The class of observation systems under consideration is restricted by ones with multiplicative noises: any additive payload component is absent in the observable signal, but the observation noise intensity is a function of the MJP state under estimation. To calculate the integrals in the estimate, the author uses the composite midpoint rule of the precision order $3$, along with the composite midpoint rule for triangles of the precision order $4$. The constructed numerical algorithms of filtering have the final precision of the orders $1$ and $2$.
Keywords: Markov jump process, optimal filtering, additive and multiplicative observation noises, stochastic differential equation, analytical and numerical approximation.
Funding agency Grant number
Russian Foundation for Basic Research 19-07-00187_а
The work was supported in part by the Russian Foundation for Basic Research (project No. 19-07-00187 A).
Received: 11.10.2019
Document Type: Article
Language: Russian
Citation: A. V. Borisov, “Numerical schemes of Markov jump process filtering given discretized observations III: Multiplicative noises case”, Inform. Primen., 14:2 (2020), 10–18
Citation in format AMSBIB
\Bibitem{Bor20}
\by A.~V.~Borisov
\paper Numerical schemes of Markov jump process filtering given discretized observations III: Multiplicative noises case
\jour Inform. Primen.
\yr 2020
\vol 14
\issue 2
\pages 10--18
\mathnet{http://mi.mathnet.ru/ia656}
\crossref{https://doi.org/10.14357/19922264200202}
Linking options:
  • https://www.mathnet.ru/eng/ia656
  • https://www.mathnet.ru/eng/ia/v14/i2/p10
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024