Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2019, Volume 13, Issue 4, Pages 36–41
DOI: https://doi.org/10.14357/19922264190406
(Mi ia626)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical foundations of continuous VaR criterion optimization in the collection of markets

G. A. Agasandyan

A. A. Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 40 Vavilov Str., Moscow 119333, Russian Federation
Full-text PDF (152 kB) Citations (1)
References:
Abstract: The work continues studying the problems of using continuous VaR criterion (CC-VaR) in financial markets. The application of CC-VaR in a collection of theoretical markets of different dimensions that are mutually connected by their underliers is concerned. In a typical model of the collection of one two-dimensional market and two one-dimensional markets, the most general case of their conjoint functioning is considered. The rule of constructing a combined portfolio optimal on CC-VaR in these markets is submitted. This rule is founded on misbalance in returns relative between markets with maintaining optimality on CC-VaR. The optimal combined portfolio with three components is constructed from basis instruments of all markets and by using ideas of randomization in their composition. Also, the idealistic and surrogate versions of this combined portfolio, which are useful in testing all algorithmic calculations and in graphic illustrating portfolio's payoff functions, are adduced. The model can be extended without academic difficulties onto markets of greater dimensions. Also, two truncated variants of problem setting with excluded either one of one-dimensional markets or the two-dimensional market are fully justified.
Keywords: underliers, risk preferences function, continuous VaR criterion, cost and forecast densities, return relative function, Newman–Pearson procedure, combined portfolio, randomization, surrogate portfolio, idealistic portfolio.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00816_а
The work was supported by the Russian Foundation for Basic Research (project 17-01-00816).
Received: 27.03.2019
Document Type: Article
Language: Russian
Citation: G. A. Agasandyan, “Theoretical foundations of continuous VaR criterion optimization in the collection of markets”, Inform. Primen., 13:4 (2019), 36–41
Citation in format AMSBIB
\Bibitem{Aga19}
\by G.~A.~Agasandyan
\paper Theoretical foundations of~continuous VaR criterion optimization in~the~collection of~markets
\jour Inform. Primen.
\yr 2019
\vol 13
\issue 4
\pages 36--41
\mathnet{http://mi.mathnet.ru/ia626}
\crossref{https://doi.org/10.14357/19922264190406}
Linking options:
  • https://www.mathnet.ru/eng/ia626
  • https://www.mathnet.ru/eng/ia/v13/i4/p36
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :32
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024