Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2019, Volume 13, Issue 1, Pages 40–48
DOI: https://doi.org/10.14357/19922264190106
(Mi ia576)
 

Local approximation models for human physical activity classification

D. A. Anikeeva, G. O. Penkina, V. V. Strijovab

a Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, Moscow Region 141700, Russian Federation
b A. A. Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 40 Vavilov Str., Moscow 119333, Russian Federation
References:
Abstract: The research is devoted to the time series classification. The time series is measured by an accelerometer of a wearable device. A class of physical activity is defined by its feature description of a time segment. To construct this description, the authors propose to use parameters of various approximation splines (algebraic, smoothing, adaptive regression, or spline with dynamic nodes). The logistic regression is used as a classifier. It delivers desired quality of the activity recognition. The authors analyze the space of the local approximation parameters. Classification accuracy depends on the method of this space construction. The computational experiment finds the optimal approximation parameters and parameters of the classifier.
Keywords: local approximation model, time series, classification, splines, feature space.
Funding agency Grant number
Russian Foundation for Basic Research 17-07-1574
19-07-1155
Ministry of Science and Higher Education of the Russian Federation 05.Y09.21.0018
The work was partially supported by the Russian Foundation for Basic Research (projects 17-07-1574 and 19-07-1155).
Received: 23.05.2018
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. A. Anikeev, G. O. Penkin, V. V. Strijov, “Local approximation models for human physical activity classification”, Inform. Primen., 13:1 (2019), 40–48
Citation in format AMSBIB
\Bibitem{AniPenStr19}
\by D.~A.~Anikeev, G.~O.~Penkin, V.~V.~Strijov
\paper Local approximation models for~human physical activity classification
\jour Inform. Primen.
\yr 2019
\vol 13
\issue 1
\pages 40--48
\mathnet{http://mi.mathnet.ru/ia576}
\crossref{https://doi.org/10.14357/19922264190106}
\elib{https://elibrary.ru/item.asp?id=37170981}
Linking options:
  • https://www.mathnet.ru/eng/ia576
  • https://www.mathnet.ru/eng/ia/v13/i1/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024