Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2019, Volume 13, Issue 1, Pages 9–15
DOI: https://doi.org/10.14357/19922264190102
(Mi ia572)
 

This article is cited in 6 scientific papers (total in 6 papers)

Stochastic differential system output control by the quadratic criterion. II. Dynamic programming equations numerical solution

A. V. Bosov, A. I. Stefanovich

Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Full-text PDF (502 kB) Citations (6)
References:
Abstract: The second part of the optimal control problem investigation for the Ito diffusion process and the controlled linear output is presented. Optimal control for output $dz_t= a_t y_t \,dt+b_t z_t \,dt+ c_t u_t\,dt+\sigma_t \,dw_t$ of the stochastic differential system $dy_t= A_t(y_t)\,dt +\Sigma_t (y_t) \,dv_t$ and quadratic quality criterion defined by Bellman function having form $V_t(y,z)= \alpha_t z^2+\beta_t(y) z+\gamma_t(y)$ is determined numerically by an approximate solution to*the grid methods of differential equations for the coefficients $\alpha_t$, $\beta_t(y)$, and $\gamma_t(y)$. A model experiment based on a simple differential presentation for the RTT (Round-Trip Time) parameter of the TCP (Transmission Control Protocol) network protocol is considered in detail. The results of numerical simulation are given and allow one to assess the difficulties in the practical implementation of the optimal solution and define the tasks of further research.
Keywords: stochastic differential equation, optimal control, dynamic programming, Bellman function, Riccati equation, linear differential equations of parabolic type.
Funding agency Grant number
Russian Foundation for Basic Research 16-07-00677_а
This work was partially supported by the Russian Science Foundation (grant 16-07-00677).
Received: 07.06.2018
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Bosov, A. I. Stefanovich, “Stochastic differential system output control by the quadratic criterion. II. Dynamic programming equations numerical solution”, Inform. Primen., 13:1 (2019), 9–15
Citation in format AMSBIB
\Bibitem{BosSte19}
\by A.~V.~Bosov, A.~I.~Stefanovich
\paper Stochastic differential system output control by~the~quadratic criterion.~II.~Dynamic programming equations numerical solution
\jour Inform. Primen.
\yr 2019
\vol 13
\issue 1
\pages 9--15
\mathnet{http://mi.mathnet.ru/ia572}
\crossref{https://doi.org/10.14357/19922264190102}
\elib{https://elibrary.ru/item.asp?id=37170977}
Linking options:
  • https://www.mathnet.ru/eng/ia572
  • https://www.mathnet.ru/eng/ia/v13/i1/p9
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024