Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2018, Volume 12, Issue 4, Pages 96–105
DOI: https://doi.org/10.14357/19922264180414
(Mi ia569)
 

This article is cited in 5 scientific papers (total in 5 papers)

Using supracorpora databases for quantitative analysis of machine translations

N. V. Buntmana, A. A. Goncharovb, I. M. Zatsmanb, V. A. Nurievb

a M. V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
b Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Full-text PDF (173 kB) Citations (5)
References:
Abstract: The paper discusses an information technology that supports expertise of machine translations. The technology has been developed to meet the following conditions: ($i$) there are connectives in all translated contexts; ($ii$) the connectives may be both one-word (khotya ‘although,’ a ‘and’) and multiword (da esche ‘and beside this,’ no zato ‘but instead’); and ($iii$) between words making up a given connective, there may be a space (esli (space) tak ‘if (space) then’). With this technology, expertise of machine translations develops through three main stages: ($i$) linguistic annotation of machine translations in a supracorpora database; ($ii$) quantitative processing of annotations; and ($iii$) linguistic analysis of annotations and quantitative data. The paper describes technological aspects of the first two stages. The examples given are only those with multiword connectives. Source sentences chosen for machine translation have been collected from literary texts.
Keywords: supracorpora database, machine translation, classification of errors, technology supporting expertise, linguistic annotation, corpus linguistics, connectives.
Funding agency Grant number
Russian Humanitarian Science Foundation 16-24-41002
Swiss National Science Foundation IZLRZ1 164059
The work was fulfilled at the Institute of Informatics Problems of the Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences and supported by the Russian Foundation for Basic Research (project No. 16-24-41002).
Received: 15.10.2018
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. V. Buntman, A. A. Goncharov, I. M. Zatsman, V. A. Nuriev, “Using supracorpora databases for quantitative analysis of machine translations”, Inform. Primen., 12:4 (2018), 96–105
Citation in format AMSBIB
\Bibitem{BunGonZat18}
\by N.~V.~Buntman, A.~A.~Goncharov, I.~M.~Zatsman, V.~A.~Nuriev
\paper Using supracorpora databases for~quantitative analysis of~machine translations
\jour Inform. Primen.
\yr 2018
\vol 12
\issue 4
\pages 96--105
\mathnet{http://mi.mathnet.ru/ia569}
\crossref{https://doi.org/10.14357/19922264180414}
\elib{https://elibrary.ru/item.asp?id=36574082}
Linking options:
  • https://www.mathnet.ru/eng/ia569
  • https://www.mathnet.ru/eng/ia/v12/i4/p96
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :148
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024