Abstract:
Mathematical device built upon the category theory is developed which was previously proposed to
formally describe and rigorously explore procedures of employing models in engineering that constitute the
pragmatics of model-based systems engineering. The essence of the device consists in mathematical representation
of assembly drawings (megamodels of systems) as diagrams in categories whose objects are models, and morphisms
represent actions associated with assembling system models from component models. Category-theoretical methods
for solving direct and inverse pragmatic problems of assembling systems are proposed and explored. The key role of
the diagram monad is revealed. Special attention is paid to the problem of recovering the configuration of a given
system, taking into account technological limitations of the assembling means and procedures. A number of key
systems engineering concepts are matched with relevant constructions of the category theory.
\Bibitem{Kov18}
\by S.~Kovalyov
\paper Category theory as a mathematical pragmatics of model-based systems engineering
\jour Inform. Primen.
\yr 2018
\vol 12
\issue 1
\pages 95--104
\mathnet{http://mi.mathnet.ru/ia521}
\crossref{https://doi.org/10.14357/19922264180112}
\elib{https://elibrary.ru/item.asp?id=32686793}
Linking options:
https://www.mathnet.ru/eng/ia521
https://www.mathnet.ru/eng/ia/v12/i1/p95
This publication is cited in the following 6 articles:
S. P. Kovalev, “Algebraicheskaya spetsifikatsiya raspredelennykh sistem s izmenyayuscheisya arkhitekturoi”, Inform. i ee primen., 18:1 (2024), 11–17
R. N. Abutalipov, A. U. Zammoev, G. V. Chernyshev, “Poisk teoreticheskikh podkhodov dlya issledovaniya
kiberfizicheskikh sistem i sred s intellektualnym upravleniem”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 26:6 (2024), 26–44
S. P. Kovalev, “Monada diagramm kak matematicheskaya metamodel sistemnoi inzhenerii”, Inform. i ee primen., 17:2 (2023), 11–17
S. P. Kovalev, “Algebraicheskaya spetsifikatsiya grafovykh vychislitelnykh struktur”, Inform. i ee primen., 16:1 (2022), 2–9
S. P. Kovalev, “Metody teorii kategorii v tsifrovom proektirovanii geterogennykh kiberfizicheskikh sistem”, Inform. i ee primen., 15:1 (2021), 23–29
S. P. Kovalev, “Proektirovanie informatsionnogo obespecheniya tsifrovykh dvoinikov energeticheskikh sistem”, Sistemy i sredstva inform., 30:1 (2020), 66–81