Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2017, Volume 11, Issue 3, Pages 60–72
DOI: https://doi.org/10.14357/19922264170307
(Mi ia486)
 

Improving classification quality for the task of finding intrinsic plagiarism

I. O. Molybogab, A. P. Motrenkoa, V. V. Strijovc

a Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, Moscow Region 141700, Russian Federation
b Center for Energy Systems, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Str., Moscow 143026, Russian Federation
c A. A. Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 40 Vavilov Str., Moscow 119333, Russian Federation
References:
Abstract: The paper addresses the classification problem in multidimensional spaces. The authors propose a supervised modification of the t-distributed Stochastic Neighbor Embedding Algorithm. Additional features of the proposed modification are that, unlike the original algorithm, it does not require retraining if new data are added to the training set and can be easily parallelized. The novel method was applied to detect intrinsic plagiarism in a collection of documents. The authors also tested the performance of their algorithm using synthetic data and showed that the quality of classification is higher with the algorithm than without or with other algorithms for dimension reduction.
Keywords: data analysis; dimension reduction; nonlinear dimension reduction; manifold learning; intrinsic plagiarism detection.
Funding agency Grant number
Russian Foundation for Basic Research 16-07-01155_а
This publication is funded by the Russian Foundation for Basic Research (project No. 16-07-01155).
Received: 20.02.2017
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. O. Molybog, A. P. Motrenko, V. V. Strijov, “Improving classification quality for the task of finding intrinsic plagiarism”, Inform. Primen., 11:3 (2017), 60–72
Citation in format AMSBIB
\Bibitem{MolMotStr17}
\by I.~O.~Molybog, A.~P.~Motrenko, V.~V.~Strijov
\paper Improving classification quality for the task of finding intrinsic plagiarism
\jour Inform. Primen.
\yr 2017
\vol 11
\issue 3
\pages 60--72
\mathnet{http://mi.mathnet.ru/ia486}
\crossref{https://doi.org/10.14357/19922264170307}
\elib{https://elibrary.ru/item.asp?id=29992110}
Linking options:
  • https://www.mathnet.ru/eng/ia486
  • https://www.mathnet.ru/eng/ia/v11/i3/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024