Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2017, Volume 11, Issue 2, Pages 74–84
DOI: https://doi.org/10.14357/19922264170209
(Mi ia474)
 

On modification of the mean squared error loss function for solving nonlinear heteroscedastic errors-in-variables problems

G. I. Rudoy

Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, Moscow Region 141700, Russian Federation
References:
Abstract: The paper considers the problem of finding the optimal parameters of a nonlinear regression model accounting for errors in both dependent and independent variables. The errors of different measurements are assumed to belong to different probability distributions with different variances. A modified mean squared error-based loss function is derived and analyzed for this case. In the computational experiment, the measurements of the laser's radiation power as a nonlinear function of the resonator's transparency are used to compare the parameters vectors minimizing the presented loss function and the classical mean squared error. The convergence of the parameters minimizing the presented loss function to the optimal parameters for the classical loss function is studied. In addition, some values of the parameters are considered to be “true” ones and are used to generate synthetic data using the physical model and Gaussian noise, which is then used to study the convergence of the parameters minimizing the presented and the classical loss function, respectively, as the function of the noise parameters.
Keywords: errors-in-variables models; heteroscedastic errors; symbolic regression; nonlinear regression.
Received: 15.09.2016
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. I. Rudoy, “On modification of the mean squared error loss function for solving nonlinear heteroscedastic errors-in-variables problems”, Inform. Primen., 11:2 (2017), 74–84
Citation in format AMSBIB
\Bibitem{Rud17}
\by G.~I.~Rudoy
\paper On modification of the mean squared error loss function for solving nonlinear heteroscedastic errors-in-variables problems
\jour Inform. Primen.
\yr 2017
\vol 11
\issue 2
\pages 74--84
\mathnet{http://mi.mathnet.ru/ia474}
\crossref{https://doi.org/10.14357/19922264170209}
\elib{https://elibrary.ru/item.asp?id=29426145}
Linking options:
  • https://www.mathnet.ru/eng/ia474
  • https://www.mathnet.ru/eng/ia/v11/i2/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
    Statistics & downloads:
    Abstract page:995
    Full-text PDF :88
    References:38
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024