Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2017, Volume 11, Issue 2, Pages 50–58
DOI: https://doi.org/10.14357/19922264170206
(Mi ia471)
 

This article is cited in 5 scientific papers (total in 5 papers)

Modeling the signal-to-interference ratio in a mobile network with moving devices

Yu. V. Gaidamakaab, Yu. N. Orlovc, D. A. Molchanova, A. K. Samuylova

a Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow 117198, Russian Federation
b Institute of Informatics Problems, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
c Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 4 Miusskaya Sq., Moscow 125047, Russian Federation
Full-text PDF (332 kB) Citations (5)
References:
Abstract: The goal of the study is to analyze the signal-to-interference ratio (SIR) for device-to-device interaction of devices communication in the 5th generation mobile networks, taking into account the movement of the receiving and transmitting devices in the service area. The SIR value at the receiver of the associated pair is studied as a time-varying random process, and the mathematical model of motion is given by a kinetic equation taking into account the given average speed of the devices, their spatial density, and the maximum allowable communication radius. The measures of performance quality were studied by numerical analysis using SIR simulation of a key channel. The measures are the following: the signal interruption probability for the receiver–transmitter pair, the probability density function of the random variables for the duration of the availability period, and the period of absence of communication. It is shown that the signal interruption probability grows logarithmically as either the average device speed or the number of devices in the service area increases.
Keywords: wireless network; signal-to-interference ratio; device-to-device; stochastic geometry; motion model; kinetic equation; performance measure; signal interruption probability.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 2.3397.2017
The publication was supported by the Ministry of Education and Science of the Russian Federation (project No. 2.3397.2017).
Received: 15.04.2017
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. V. Gaidamaka, Yu. N. Orlov, D. A. Molchanov, A. K. Samuylov, “Modeling the signal-to-interference ratio in a mobile network with moving devices”, Inform. Primen., 11:2 (2017), 50–58
Citation in format AMSBIB
\Bibitem{GaiOrlMol17}
\by Yu.~V.~Gaidamaka, Yu.~N.~Orlov, D.~A.~Molchanov, A.~K.~Samuylov
\paper Modeling the signal-to-interference ratio in a mobile network with moving devices
\jour Inform. Primen.
\yr 2017
\vol 11
\issue 2
\pages 50--58
\mathnet{http://mi.mathnet.ru/ia471}
\crossref{https://doi.org/10.14357/19922264170206}
\elib{https://elibrary.ru/item.asp?id=29426142}
Linking options:
  • https://www.mathnet.ru/eng/ia471
  • https://www.mathnet.ru/eng/ia/v11/i2/p50
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
    Statistics & downloads:
    Abstract page:2474
    Full-text PDF :164
    References:46
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024