Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2013, Volume 7, Issue 4, Pages 66–74
DOI: https://doi.org/10.14357/19922264130407
(Mi ia286)
 

This article is cited in 1 scientific paper (total in 1 paper)

On convergence of the distributions of random sums to skew exponential power laws

M. E. Grigor'evaa, V. Yu. Korolevbc

a Parexel International, Moscow 121609, Russian Federation
b Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University; Moscow 119991, Russian Federation
c Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, Russian Federation
Full-text PDF (216 kB) Citations (1)
References:
Abstract: An extension of the class of exponential power distributions (also known as generalized Laplace distributions) to the nonsymmetric case is proposed. The class of skew exponential power distributions (skew generalized Laplace distributions) is introduced as a family of special variance-mean normal mixtures. Expressions for the moments of skew exponential power distributions are given. It is demonstrated that skew exponential power distributions can be used as asymptotic approximations. For this purpose, a theorem is proved establishing necessary and sufficient conditions for the convergence of the distributions of sums of a random number of independent identically distributed random variables to skew exponential power distributions. Convergence rate estimates are presented for a special case of random walks generated by compound doubly stochastic Poisson processes.
Keywords: random sum; generalized Laplace distribution; skew generalized Laplace distribution; exponential power distribution; symmetric stable distribution; one-sided stable distribution; variance-mean normal mixture; mixed Poisson distribution; mixture of probability distributions; identifiable mixtures; additively closed family; convergence rate estimate.
Received: 10.01.2013
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. E. Grigor'eva, V. Yu. Korolev, “On convergence of the distributions of random sums to skew exponential power laws”, Inform. Primen., 7:4 (2013), 66–74
Citation in format AMSBIB
\Bibitem{GriKor13}
\by M.~E.~Grigor'eva, V.~Yu.~Korolev
\paper On convergence of~the~distributions of~random sums to~skew exponential power laws
\jour Inform. Primen.
\yr 2013
\vol 7
\issue 4
\pages 66--74
\mathnet{http://mi.mathnet.ru/ia286}
\crossref{https://doi.org/10.14357/19922264130407}
\elib{https://elibrary.ru/item.asp?id=21006087}
Linking options:
  • https://www.mathnet.ru/eng/ia286
  • https://www.mathnet.ru/eng/ia/v7/i4/p66
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :219
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024