Abstract:
The paper presents the results of measurements of shock-wave compression profiles of VT1-0 titanium samples after rolling and in the annealed state. In the experiments, the pressure of shock compression and distance passed by the wave before emerging to the sample surface were varied. From measurements of the elastic precursor decay and compression rate in a plastic shock wave of different amplitudes, the plastic strain and the corresponding shear stresses in the initial and subsequent stages of high-rate deformation in an elastoplastic shock wave are determined. It is found that the reduction in the dislocation density as a result of annealing reduces the hardness of the material but significantly increases its dynamic yield strengh, corresponding to the strain rate above 104 s−1. With a reduction in the strain rate, this anomalous difference in the flow stresses is leveled off.
Citation:
G. I. Kanel', S. V. Razorenov, G. V. Garkushin, A. V. Pavlenko, S. N. Malyugina, “Change of the kinetics of shock-wave deformation and fracture of VT1-0 titanium as a result of annealing”, Fizika Tverdogo Tela, 58:6 (2016), 1153–1160; Phys. Solid State, 58:6 (2016), 1191–1198
\Bibitem{KanRazGar16}
\by G.~I.~Kanel', S.~V.~Razorenov, G.~V.~Garkushin, A.~V.~Pavlenko, S.~N.~Malyugina
\paper Change of the kinetics of shock-wave deformation and fracture of VT1-0 titanium as a result of annealing
\jour Fizika Tverdogo Tela
\yr 2016
\vol 58
\issue 6
\pages 1153--1160
\mathnet{http://mi.mathnet.ru/ftt9958}
\elib{https://elibrary.ru/item.asp?id=27368652}
\transl
\jour Phys. Solid State
\yr 2016
\vol 58
\issue 6
\pages 1191--1198
\crossref{https://doi.org/10.1134/S1063783416060202}
Linking options:
https://www.mathnet.ru/eng/ftt9958
https://www.mathnet.ru/eng/ftt/v58/i6/p1153
This publication is cited in the following 9 articles:
G. V. Garkushin, A. S. Savinykh, S. V. Razorenov, I. G. Brodova, D. Yu. Rasposienko, D. I. Devyaterikov, P. E. Panfilov, “Shock compression of [101¯0]-axis zinc single crystal”, Journal of Applied Physics, 137:2 (2025)
G. I. Kanel, A. S. Savinykh, G. V. Garkushin, S. V. Razorenov, “High-Rate Deformation of Titanium in Shock Waves at Normal and Elevated Temperatures”, J. Exp. Theor. Phys., 132:3 (2021), 438
V. V. Malashenko, “Nonmonotonic rate dependence of the dynamic yield strength of alloys under high strain rate deformation”, Phys. Solid State, 63:10 (2021), 1462–1464
A. V. Pavlenko, A. V. Dobromyslov, N. I. Taluts, S. N. Malyugina, S. S. Mokrushin, “Shock-Wave Properties and Deformation-Induced Structure of Commercial-Purity Titanium”, Phys. Metals Metallogr., 122:8 (2021), 794
G. I. Kanel', “Nanosecond thermophysics (review)”, High Temperature, 58:4 (2020), 550–565
G. V. Garkushin, A. S. Savinykh, S. V. Razorenov, G. I. Kanel', “Influence of high-temperature annealing on the resistance to high strain rate and fracture of tantalum at temperatures of 20 and 500∘C”, Tech. Phys., 64:5 (2019), 674–679
Chandra Prakash, Ibrahim E. Gunduz, Vikas Tomar, 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018
G. I. Kanel', G. V. Garkushin, A. S. Savinykh, S. V. Razorenov, “Effect of Small Preliminary Deformation on the Evolution of Elastoplastic Waves of Shock Compression in Annealed VT1-0 Titanium”, J. Exp. Theor. Phys., 127:2 (2018), 337
G. I. Kanel, E. B. Zaretsky, S. V. Razorenov, S. I. Ashitkov, V. E. Fortov, “Unusual plasticity and strength of metals at ultra-short load durations”, Phys. Usp., 60:5 (2017), 490–508