Abstract:
A model of the grain-boundary self-diffusion process in metals undergoing phase transitions in the solid state is proposed. The model is based on the ideas and approaches of the theory of nonequilibrium grain boundaries. It is shown that the range of application of basic relations of this theory can be extended, and they can be used to calculate the parameters of grain-boundary self-diffusion in high-temperature and low-temperature phases of metals with phase transition. Based on the constructed model, activation energies of grainboundary self-diffusion in titanium and zirconium are calculated, and their anomalously low values in the low-temperature phase are explained. The calculated activation energies of grain-boundary self-diffusion are in good agreement with experimental data.
Citation:
V. N. Chuvil’deev, A. V. Semenycheva, “Model of grain-boundary self-diffusion in α- and β-phases of titanium and zirconium”, Fizika Tverdogo Tela, 59:1 (2017), 5–12; Phys. Solid State, 59:1 (2017), 1–8
\Bibitem{ChuSem17}
\by V.~N.~Chuvil’deev, A.~V.~Semenycheva
\paper Model of grain-boundary self-diffusion in $\alpha$- and $\beta$-phases of titanium and zirconium
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 1
\pages 5--12
\mathnet{http://mi.mathnet.ru/ftt9698}
\crossref{https://doi.org/10.21883/FTT.2017.01.43942.118}
\elib{https://elibrary.ru/item.asp?id=28969421}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 1
\pages 1--8
\crossref{https://doi.org/10.1134/S1063783417010048}
Linking options:
https://www.mathnet.ru/eng/ftt9698
https://www.mathnet.ru/eng/ftt/v59/i1/p5
This publication is cited in the following 5 articles:
Tong Lin, Chun Li, Mushi Zheng, Hao Jiang, Xiaoqing Si, Junlei Qi, Jian Cao, “Role of nanostructured surface layers in enhancing pure titanium diffusion bonding above their destabilization temperatures”, Materials Characterization, 217 (2024), 114383
G. P. Kochanov, I. A. Kostikov, I. A. Kovalev, S. V. Kannykin, S. V. Shevtsov, A. A. Konovalov, P. A. Osipov, A. V. Kostyuchenko, S. N. Klimaev, S. S. Strelnikova, A. S. Chernyavskii, K. A. Solntsev, “Sintez tugoplavkoi keramiki na osnove karbida tsirkoniya pryamoi karbidizatsiei tsirkoniya”, Neorganicheskie materialy, 59:2 (2023), 202
G. P. Kochanov, I. A. Kostikov, I. A. Kovalev, S. V. Kannykin, S. V. Shevtsov, A. A. Konovalov, P. A. Osipov, A. V. Kostyuchenko, S. N. Klimaev, S. S. Strel'nikova, A. S. Chernyavskii, K. A. Solntsev, “Preparation of Zirconium Carbide-Based Refractory Ceramics by Direct Zirconium Carburization”, Inorg Mater, 59:2 (2023), 196
A. V. Khomenko, “Severe plastic deformation: methods and mathematical models of nanomaterials formation”, J. Phys. Stud., 24:2 (2020)
V.N. Chuvil'deev, V.I. Kopylov, A.V. Nokhrin, P.V. Tryaev, N.A. Kozlova, N.Yu. Tabachkova, Yu.G. Lopatin, A.V. Ershova, A.S. Mikhaylov, M.Yu. Gryaznov, M.K. Chegurov, “Study of mechanical properties and corrosive resistance of ultrafine-grained α-titanium alloy Ti-5Al-2V”, Journal of Alloys and Compounds, 723 (2017), 354