Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2017, Volume 59, Issue 5, Pages 1023–1035
DOI: https://doi.org/10.21883/FTT.2017.05.44396.240
(Mi ftt9597)
 

This article is cited in 34 scientific papers (total in 34 papers)

Thermal properties

An analytical description of transient thermal processes in harmonic crystals

V. A. Kuzkinab, A. M. Krivtsovba

a Peter the Great St. Petersburg Polytechnic University
b Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
Abstract: We consider two transient thermal processes in uniformly heated harmonic crystals: (i) equalibration of kinetic and potential energies and (ii) redistribution of the kinetic energy among the spatial directions. Equations describing these two processes in two-dimensional and three-dimensional crystals are derived. Analytical solutions of these equations for the square and triangular lattices are obtained. It is shown that the characteristic time of the transient processes is of the order of ten periods of atomic vibrations. The difference between the kinetic and potential energies oscillates in time. For the triangular lattice, amplitude of the oscillations decays inversely proportional to time, while for the square lattice it decays inversely proportional to the square root of time. In general, there is no equipartition of the kinetic energy among spatial directions, i.e. the kinetic temperature demonstrates tensor properties. In addition, the covariance of velocities of different particles is nonzero even at the steady state. The analytical results are supported by numerical simulations. It is also shown that the obtained solutions accurately describe the transient thermal processes in weakly nonlinear crystals at short times.
Received: 14.06.2016
Revised: 20.10.2016
English version:
Physics of the Solid State, 2017, Volume 59, Issue 5, Pages 1051–1062
DOI: https://doi.org/10.1134/S1063783417050201
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Kuzkin, A. M. Krivtsov, “An analytical description of transient thermal processes in harmonic crystals”, Fizika Tverdogo Tela, 59:5 (2017), 1023–1035; Phys. Solid State, 59:5 (2017), 1051–1062
Citation in format AMSBIB
\Bibitem{KuzKri17}
\by V.~A.~Kuzkin, A.~M.~Krivtsov
\paper An analytical description of transient thermal processes in harmonic crystals
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 5
\pages 1023--1035
\mathnet{http://mi.mathnet.ru/ftt9597}
\crossref{https://doi.org/10.21883/FTT.2017.05.44396.240}
\elib{https://elibrary.ru/item.asp?id=29405105}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 5
\pages 1051--1062
\crossref{https://doi.org/10.1134/S1063783417050201}
Linking options:
  • https://www.mathnet.ru/eng/ftt9597
  • https://www.mathnet.ru/eng/ftt/v59/i5/p1023
  • This publication is cited in the following 34 articles:
    1. Sergey V. Dmitriev, Vitaly A. Kuzkin, Anton M. Krivtsov, “Nonequilibrium thermal rectification at the junction of harmonic chains”, Phys. Rev. E, 108:5 (2023)  crossref
    2. Sergei D. Liazhkov, Vitaly A. Kuzkin, “Unsteady two-temperature heat transport in mass-in-mass chains”, Phys. Rev. E, 105:5 (2022)  crossref
    3. Ekaterina A. Podolskaya, Anton M. Krivtsov, Vitaly A. Kuzkin, Advanced Structured Materials, 164, Mechanics and Control of Solids and Structures, 2022, 501  crossref
    4. Rita I. Babicheva, Alexander S. Semenov, Elvira G. Soboleva, Aleksey A. Kudreyko, Kun Zhou, Sergey V. Dmitriev, “Discrete breathers in a triangular β -Fermi-Pasta-Ulam-Tsingou lattice”, Phys. Rev. E, 103:5 (2021)  crossref
    5. A M Krivtsov, A S Murachev, “Transition to thermal equilibrium in a crystal subjected to instantaneous deformation”, J. Phys.: Condens. Matter, 33:21 (2021), 215403  crossref
    6. O. S. Loboda, E. A. Podolskaya, D. V. Tsvetkov, A. M. Krivtsov, “On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals”, Continuum Mech. Thermodyn., 33:2 (2021), 485  crossref
    7. Anton M. Krivtsov, Vitaly A. Kuzkin, Encyclopedia of Continuum Mechanics, 2020, 642  crossref
    8. Vitaly A. Kuzkin, Sergei D. Liazhkov, “Equilibration of kinetic temperatures in face-centered cubic lattices”, Phys. Rev. E, 102:4 (2020)  crossref
    9. A.V. Savin, E.A. Korznikova, A.M. Krivtsov, S.V. Dmitriev, “Longitudinal stiffness and thermal conductivity of twisted carbon nanoribbons”, European Journal of Mechanics - A/Solids, 80 (2020), 103920  crossref
    10. I. Berinskii, V. A. Kuzkin, “Equilibration of energies in a two-dimensional harmonic graphene lattice”, Phil. Trans. R. Soc. A., 378:2162 (2020), 20190114  crossref
    11. Elena A. Korznikova, Vitaly A. Kuzkin, Anton M. Krivtsov, Daxing Xiong, Vakhid A. Gani, Aleksey A. Kudreyko, Sergey V. Dmitriev, “Equilibration of sinusoidal modulation of temperature in linear and nonlinear chains”, Phys. Rev. E, 102:6 (2020)  crossref
    12. F. Hadipour, D. Saadatmand, M. Ashhadi, A. Moradi Marjaneh, I. Evazzade, A. Askari, S.V. Dmitriev, “Interaction of phonons with discrete breathers in one-dimensional chain with tunable type of anharmonicity”, Physics Letters A, 384:4 (2020), 126100  crossref
    13. Serge N. Gavrilov, Anton M. Krivtsov, “Steady-state kinetic temperature distribution in a two-dimensional square harmonic scalar lattice lying in a viscous environment and subjected to a point heat source”, Continuum Mech. Thermodyn., 32:1 (2020), 41  crossref
    14. I. F. Golovnev, E. I. Golovneva, “Calculation of the Temperature Dependence of the Surface Energy of Metal Nanoclusters in a Wide Range of Their Radii”, Phys Mesomech, 23:4 (2020), 316  crossref
    15. D. V. Korikov, “Asymptotic description of fast thermal processes in scalar harmonic lattices”, Phys. Solid State, 62:11 (2020), 2232–2241  mathnet  mathnet  crossref  crossref
    16. O.S. Loboda, E.A. Podolskaya, A.M. Krivtsov, D.V. Tsvetkov, “On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals”, Comp. Contin. Mech., 12:4 (2019), 390  crossref
    17. S. N. Gavrilov, A. M. Krivtsov, D. V. Tsvetkov, “Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply”, Continuum Mech. Thermodyn., 31:1 (2019), 255  crossref
    18. O. S. Loboda, A. M. Krivtsov, A. V. Porubov, D. V. Tsvetkov, “Thermal processes in a one‐dimensional crystal with regard for the second neighbor interaction”, Z Angew Math Mech, 99:9 (2019)  crossref
    19. Daxing Xiong, Sergey V. Dmitriev, Nonlinear Systems and Complexity, 26, A Dynamical Perspective on the ɸ4 Model, 2019, 281  crossref
    20. Vitaly A. Kuzkin, “Thermal equilibration in infinite harmonic crystals”, Continuum Mech. Thermodyn., 31:5 (2019), 1401  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025