Abstract:
Mechanical stability under prolonged loading and thermostability under annealing have been studied for nano- and microcrystalline titanium obtained by different methods of intense plastic deformation. The effect of nanoporosity and the fraction of high angle boundaries formed due to intense plastic deformation has been revealed and analyzed. It has been established that, depending on the loading or the annealing temperature, thermomechanical stability of titanium can be affected, apart from the above structural characteristics, by either twin grain boundaries or titanium-carbide disperse particles.
Citation:
V. I. Betekhtin, V. Sklenička, A. G. Kadomtsev, Yu. R. Kolobov, M. V. Narykova, “Defect structure and thermomechanical stability of nano- and microcrystalline titanium obtained by different methods of intense plastic deformation”, Fizika Tverdogo Tela, 59:5 (2017), 935–941; Phys. Solid State, 59:5 (2017), 960–966
\Bibitem{BetSklKad17}
\by V.~I.~Betekhtin, V.~Skleni{\v{c}}ka, A.~G.~Kadomtsev, Yu.~R.~Kolobov, M.~V.~Narykova
\paper Defect structure and thermomechanical stability of nano- and microcrystalline titanium obtained by different methods of intense plastic deformation
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 5
\pages 935--941
\mathnet{http://mi.mathnet.ru/ftt9584}
\crossref{https://doi.org/10.21883/FTT.2017.05.44383.391}
\elib{https://elibrary.ru/item.asp?id=29405092}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 5
\pages 960--966
\crossref{https://doi.org/10.1134/S1063783417050043}
Linking options:
https://www.mathnet.ru/eng/ftt9584
https://www.mathnet.ru/eng/ftt/v59/i5/p935
This publication is cited in the following 9 articles:
Aleksandr A. Levin, Maria V. Narykova, Alexey I. Lihachev, Boris K. Kardashev, Andrej G. Kadomtsev, Nikita D. Prasolov, Andrei G. Panfilov, Roman V. Sokolov, Pavel N. Brunkov, Makhsud M. Sultanov, Alexander V. Strizhichenko, Ilia A. Boldyrev, “Comparison of Structural, Microstructural, Elastic, and Microplastic Properties of the AAAC (A50) and ACSR (AC50/8) Cables after Various Operation Periods in Power Transmission Lines”, Crystals, 12:9 (2022), 1267
“Current Trends to Obtain Metals and Alloys with Ultrafine-Grained Structure”, Prog. Phys. Met., 23:4 (2022)
Jiri Dvorak, Petr Kral, Andrey G. Kadomtsev, Vladimir I. Betekhtin, Maria V. Narykova, Marie Kvapilova, Vaclav Sklenicka, “Influence of Cryo-Processing and Post-SPD Annealing on Creep Behavior of CP Titanium”, Materials, 15:5 (2022), 1646
Vaclav Sklenicka, Jiri Dvorak, Petr Kral, Vladimir I. Betekhtin, Andrey G. Kadomtsev, Maria V. Narykova, Sergey V. Dobatkin, Kveta Kucharova, Marie Kvapilova, “Influence of a prior pressurization treatment on creep behaviour of an ultrafine-grained Zr-2.5”, Materials Science and Engineering: A, 820 (2021), 141570
J. Dvorak, A.G. Kadomtsev, V.I. Betekhtin, V. Sklenicka, P. Kral, M. Kvapilova, “Creep behaviour of ultrafine-grained CP titanium processed by multi-pass rolling”, IOP Conf. Ser.: Mater. Sci. Eng., 1178:1 (2021), 012013
V. I. Betekhtin, A. G. Kadomtsev, M. V. Narykova, “Evolution of a defect structure during creep tests of ultrafine-grained metals and alloys produced by severe plastic deformation”, Phys. Solid State, 62:2 (2020), 318–324
V. N. Pereverzentsev, A. S. Pupynin, “Analysis of conditions for the nucleation of grain boundary nanopores in submicrocrystalline materials under intensive plastic deformation”, Tech. Phys. Lett., 46:10 (2020), 964–967
Vladimir Perevezentsev, Aleksandr Pupynin, Aleksandr Ogorodnikov, “The investigation of the evolution of diffusional properties of nonequilibrium grain boundaries during annealing of submicrocrystalline materials”, LOM, 9:1 (2019), 107
V. N. Pereverzentsev, A. S. Pupynin, A. E. Ogorodnikov, “Nanopore evolution kinetics during annealing of submicrocrystalline materials”, Tech. Phys., 63:10 (2018), 1492–1496